
Lost in the Mists of Time:
Expirations in DNS Footprints of Mobile Apps

Johnny So
Stony Brook University

Iskander Sanchez-Rola
Norton Research Group

Nick Nikiforakis
Stony Brook University

Abstract
Compared to the traditional desktop setting where web ap-
plications (apps) are live by nature, mobile apps are similar
to binary programs that are installed on devices, in that they
remain static until they are updated. However, they can also
contain live, dynamic components if they interface with the
web. This may lead to a confusing scenario, in which a mo-
bile app itself has not been updated, but changes in dynamic
components have caused changes in the overall app behavior.

In this work, we present the first large-scale analysis of mo-
bile app dependencies through a dual perspective accounting
for time and version updates, with a focus on expired domains.
First, we detail a methodology to build a representative cor-
pus comprising 77,206 versions of 15,124 unique Android
apps. Next, we extract the unique eTLD+1 domain dependen-
cies — the “DNS footprint” — of each APK by monitoring
the network traffic produced with a dynamic, UI-guided test
input generator and report on the footprint of a typical app.
Using these footprints, combined with a methodology that de-
duces potential periods of vulnerability for individual APKs
by leveraging passive DNS, we characterize how apps may
have been affected by expired domains throughout time. Our
findings indicate that the threat of expired domains in app
dependencies is nontrivial at scale, affecting hundreds of apps
and thousands of APKs, occasionally affecting apps that rank
within the top ten of their categories, apps that have hundreds
of millions of downloads, or apps that were the latest version.
Furthermore, we uncovered 41 immediately registrable do-
mains that were found in app footprints during our analyses,
and provide evidence in the form of case studies as to their
potential for abuse. We also find that even the most security-
conscious users cannot protect themselves against the risk of
their using an app that has an expired dependency, even if
they can update their apps instantaneously.

1 Introduction

The mobile platform is responsible for a significant portion of
web traffic; according to a recent statistic, mobile usage was

responsible for 62% of all web traffic in 2023, as compared to
36% for desktop usage and 2% for tablets [64]. Although web
browsing contributes most of the overall mobile web traffic,
reports have found that the contribution of mobile applications
(apps) has been steadily increasing. On average, a person has
more than 80 apps installed, and uses nine apps every day
or 30 apps every month [42], and the total number of app
downloads per year continues to increase [20].

These mobile apps are binary programs that are distributed
via app marketplaces and installed on user devices. Apps that
communicate over the Internet to provide their services can be
perceived to contain a live, dynamic component, in addition
to its static, installed component. Regardless of whether the
static, installed component is outdated, the dynamic compo-
nent can change at any moment if the online dependencies
change. This is particularly worrisome if such changes are
caused by the expiration or re-registration of critical domains
that may be responsible for key functionality, interface with
sensitive data, or affect app content. An orthogonal question is
whether this is mitigated if a user keeps their apps up to date.
From prior surveys and studies, we know that a significant por-
tion of users do not enable automatic app updates [18, 49, 68],
and there is usually a delay before users choose to update
their software in general [41, 46, 56]. Thus, the security of
older app versions becomes much more important.

Currently, industry best practices recommend that app de-
velopers attempt to balance user experience with app updates,
and force updates if necessary by integrating version-control
logic [13, 34, 51]. For example, a simple method can be to
implement minimum and maximum versions supported by
the backend, and upon discovering that the local app version
is outdated, block access to the app with a dialog that recom-
mends — or requires — an app update. Surprisingly, Android
app developers needed to implement this functionality ad-hoc
until the release of the Google Play Core AppUpdate library
in 2020 [6], and it appears that there is still no iOS counterpart
in the standard library as of 2024.

In this work, we conduct the first large-scale dynamic anal-
ysis of Android apps to characterize their dependency usage

across time and app updates, with a focus on identifying
expired domains. For each APK, we track its DNS dependen-
cies and report on temporal characteristics of app stability,
particularly on time windows of vulnerability when app de-
pendencies can be hijacked and influence app behavior. We
frame our key goals through several research questions (RQ).

RQ0: What is the DNS footprint of a typical app? In
the rest of this work, we use the term “DNS footprint” to refer
to the set of eTLD+1 domains that are contacted by an app
during execution, where eTLD+1 domains are the registrable
names that account for public suffixes. Additionally, we use
the concepts of first-order domains and second-order domains
to distinguish domains that are automatically contacted, from
domains of links that are present on webpages loaded by
apps. We extract the footprint of each APK, and find that the
supply chain attack surface of apps consists of 7.4 eTLD+1
first- and second-order domains, on average. We discovered
that 309 versions of 149 unique apps relied on 41 first-order
domains that were immediately registrable at the time of
analysis. Some affected apps were ranked within the top ten of
their categories and were downloaded more than 100 million
times, and some versions were the latest of their app.

RQ1: How stable are DNS footprints over time? We
perform a longitudinal analysis of app dependencies by lever-
aging a historical, passive DNS database to determine critical
times for every extracted footprint. On average, 2.5% of all
APKs, or 4.2% of all apps, in our data use at least one expired
domain at any time. Furthermore, 0.7% of APKs are at risk of
a domain in its footprint expiring within one month of release.

RQ2: How do DNS footprints change across updates?
We track how DNS footprints change from one version to the
next, and focus on how such changes affect the attack surface
of apps. Updates can drastically alter the footprint of an app:
over the course of 9 updates, the number of changes to the
footprints of 29% of apps is approximately equal to the overall
average app footprint size. Furthermore, we uncover evidence
that updates do not always address problems with the use of
expired domains in previous versions, even for highly-ranked
apps with more than 10 million downloads. Additionally, our
analyses suggest that the latest version of an app is more
secure than its older versions, confirming expectations.

2 Background

In this section, we outline the Domain Name System (DNS)
and dynamic analysis of Android apps. Additionally, Ap-
pendix A describes how DNS records may exist even for
expired domains and Appendix B details over-the-air updates.

2.1 The Domain Name System
The Domain Name System (DNS) is responsible for translat-
ing human-readable domain names to their machine IP ad-
dresses. Each top-level domain (TLD) has its own governing

authority; for example, generic TLDs (gTLDs) are managed
by ICANN, whereas specialized TLDs such as country-code
TLDs are managed by their respective countries. Domain
names are registered for one or several years, after which they
expire and must be renewed. Registrars are required to send
multiple expiration notifications to domain owners to provide
buffer time to renew their domains before they are released
to the public, for domains in gTLDs that are governed by the
ICANN Expired Registration Recovery Policy (ERRP) [30].
If a domain expires and is not renewed during the 30-day
Redemption Grace Period, it enters the Pending Delete status,
and will become available for registration after five days [29].
Public Suffixes. The actual names that are registrable are
found at different levels in a full domain name. The term
“top-level domain” refers to the ending suffix of a domain
— for example, .uk in example.ac.uk. However, ac.uk is
not a registrable domain; instead, example.ac.uk is. The
community maintains the Public Suffix List (PSL) [47] to
make this easier — the PSL is a list of “public suffixes”, or
“effective top-level domains” (eTLDs, or sometimes referred
to as e2LDs), under which users can directly register domain
names. These registrable domains are colloquially termed
“eTLD+1” domains because they comprise the entire eTLD
and the neighboring, registered name [43, 69].
Passive DNS. Passive DNS refers to a technique that strate-
gically places DNS sensors to capture live DNS records ob-
served in the wild [67], building partial replicas of DNS zones,
and storing them in a database. Typical DNS records are an-
notated with the first and last times they were observed, and
how many times they were observed, essentially providing
a maximal time window during which a DNS record was
live, with a representation of its request volume. The resulting
data can be used to answer questions that would otherwise be
impossible, such as historical resolution information (e.g., IP
addresses that a domain resolved to in the past).

2.2 Mobile App Analysis
Program analysis techniques are broadly categorized as static
or dynamic, depending on whether the approach involves
actually executing a program: whereas static techniques an-
alyze the source code of a program, dynamic ones extract
data from the program at runtime. Each approach has their
own advantages: static analysis techniques are lightweight,
performant, and scalable, whereas dynamic ones are slower,
more resource-intensive, but can provide different coverage.

Dynamic analysis of mobile apps can be particularly chal-
lenging because of the ecosystem; as compared to its desktop
counterpart, mobile devices are limited in variation, and are
more difficult to automate, regardless if they are emulators or
actual devices. Whereas emulators can be freely spawned on
existing resources with a flexible device and system image
configuration, they are often much slower and unstable as
compared to physical devices. In addition, although physical

Orchestrator

Database

App Selector

AndroZoo

hash1

hashN

. . .

hash

hash

. . .

DNS Server

HTTPS Proxy

Emulator

Manager

hash

Avail Domain

Lookup
Registrar

Figure 1: Footprint extraction infrastructure.

devices present higher fidelity testing environments, maintain-
ing them for long experiments will require extended physical
access to reboot devices in case of crashes or hardware fail-
ures. Thus, we use the Android Studio Emulator.

3 Methodology

In this section, we present the rationale behind our experi-
mental and analytical design. First, we discuss our threat, and
subsequently analytical, model. Then, we detail how we build
our APK corpus from multiple, disparate data sources. Next,
we describe the supporting infrastructure for data collection
and dynamic analysis. Finally, we present our approach to
detect periods in time when domains were expired, by using
passive DNS and the domain lifecycle.

3.1 Threat & Analytical Models

We consider the scenario where Android users have app in-
stallations that may be outdated (i.e., not the latest version).
Regardless of the update status, each application contacts a set
of online services. We seek to understand the threat of expired
domains in these dependencies, and simultaneously character-
ize how each application’s set of dependencies changes with
respect to time and app updates.

We primarily consider our analyses on the eTLD+1 part of
the full domains, which presents a more accurate perspective
in assessing the risk of expiring app dependencies as com-
pared to the use of the full domains. We use the following
terminology: (a) an app as an Android application, a grouping
of APKs with the same package name; (b) a version of an
app as an APK with a particular package name; (c) the DNS
footprint of an APK to refer to the set of eTLD+1 domains
that it contacts; and (d) the DNS footprint of an app to re-
fer to the union of the DNS footprints of each of its versions.
When referring to DNS footprints, we use the terms “domains,”
“eTLD+1 domains,” and “eTLD+1s” interchangeably.

Higher-Order Links. In-app web content rendering presents
web content in the context of an app itself; thus, such content

can be considered as a live, dynamic component of the app
and content changes may be perceived as app changes.

We broadly categorize web content URLs in apps, and the
resulting domains in footprints, as first-order and second-
order. The initial URL that is directly loaded by the in-app
browser upon instantiation, and the URLs that automatically
fire from loading this initial URL, are considered first-order
links. Changes in first-order links have the greatest poten-
tial for damage, because they directly influence the initial
webpage that is loaded by the in-app browser. In contrast,
second-order links — the URLs present in the anchor tags of
the initial webpage, as well as the URLs of their subsequent
requests that fire — represent the URLs that are just “one
click away.” These clicks may have “dirty” hygiene, causing
users who click on their webpages to suffer from privacy-
and security-harming behaviors, including passing through
invisible layers of scripts, visiting unexpected domains, en-
countering mixed content, and receiving undesired cookies,
resulting in an overall increase in the risk faced by users [59].
In the context of this study, this differentiation amounts to the
inclusion of one more party in the supply chain.

Accordingly, we introduce the notions of first-order foot-
prints, which are the set of first-order eTLD+1s, and second-
order footprints, which also adds second-order eTLD+1s, to
account for the difference between the severity of a first-order
and a second-order eTLD+1 expiring, in Sections 4 and 5.

3.2 Data Sources

The primary sources for our app dataset are the Google
Play Store, the AndroZoo dataset [1], and the VirusTotal
database [66]. Google Play is the official Android app mar-
ketplace and is easily accessible from the web. It provides
app metadata without requiring authentication, but only for
the latest version of applications, which can be downloaded
with a Google account and an Android device. In contrast,
the AndroZoo APK list is a collection of app metadata, span-
ning multiple years, resulting from prior work that continues
to crawl the entirety of multiple app marketplaces, includ-
ing Google Play, on a daily basis. Similarly, VirusTotal, a
Google-owned service that leverages tens of malware detec-
tion engines to determine whether a file is malicious, provides
API endpoints that return metadata and file downloads for
hash digests in their database, which continually grows from
its free and commercial user base.

Our dataset collection process begins by crawling Google
Play to amass metadata for the 500 most popular apps in all 49
Google Play app categories. Afterwards, we filter the Andro-
Zoo APK list for apps that match the metadata from Google
Play — in particular, we filter for those with a matching pack-
age name as these are guaranteed to be unique within each
marketplace [22]. Some apps have hundreds of versions, so
we limit the number of versions of each app to the most recent
10 in the aggregated dataset. Finally, we query the VirusTotal

API to download the APKs using their hash digests obtained
from the AndroZoo list. We note that VirusTotal is integrated
into enterprise systems for automated malware scanning, re-
sulting in large numbers of both benign and malicious samples
in its database [25].

In summary, the dataset comprises the VirusTotal APKs
of the most recent 10 AndroZoo versions of the 500 most
popular apps in each of the 49 Google Play categories.

Passive DNS. We also depend on Farsight DNSDB [21], a
commercial passive DNS database, to provide historical DNS
resolution data for the domains that are contacted during exe-
cution of an app version. According to their product website,
their database contains over 100 billion DNS records, starting
from 2010 [21]. We describe our domain expiration time win-
dow analysis using this passive DNS data in Section 3.4, and
discuss the results in Sections 4 and 5. We provide a detailed
empirical verification of our approach in Appendix C.

APK Release Dates. To answer RQ1 and RQ2, it is crucial
that our dataset includes the dates when each APK was re-
leased. Unfortunately, there is no readily-available, reliable
data for this: Google Play only tracks the date of the latest
update of apps, and the APK build process was changed in
2016 to explicitly clear the timestamp in the metadata [24].
We adopt a best-effort estimate by collecting the dates when
individual APKs were first seen from various sources, and
taking the earliest date among these to be the release date
of the APK. In particular, we compare the following dates:
1) the first seen date in VirusTotal, 2) the first seen date in
telemetry data of app installations, identified by hash digests,
provided by telemetry data from an industry partner, and
3) the upload date on the third-party sites APKPure [11] and
APKMirror [10], which store copies of APKs.

3.3 Infrastructure

We present an overview of the main components of the associ-
ated infrastructure for this study in Figure 1 — an app selector,
a batch orchestrator, and analysis node managers. The app
selector bootstraps the pipeline by building the dataset of
apps as previously described in Section 3.2 and sending it
to the orchestrator, which batches the workload and assigns
analysis nodes for distributed processing. Each manager is
responsible for assigning jobs to each of the multiple workers
and execution pipelines running in parallel on the node.

Pipelines are centered around an Android Studio Emula-
tor controlled through adb, the Android Debug Bridge [3].
Emulators were created with a default device profile using An-
droid version 11 (API level 30). Each emulator uses a unique
HTTPS man-in-the-middle proxy based on mitmproxy [19]
and a DNS server configured as a bind9 [31] forwarding
resolver; they are also equipped with a hook that checks non-
resolving domains to see if they are registrable in real time.
This one-to-one mapping between an emulator and its HTTPS

proxy and DNS server allows us to cleanly isolate and at-
tribute the traffic from each emulator. In addition, emulators
run in rooted mode to import the Certificate Authority (CA) of
the HTTPS proxy as a trusted CA in the Android OS in order
to decrypt traffic. Lastly, each emulator installs a Frida [57]
server used to dynamically instrument functions to disable
certificate pinning and grant permissions at runtime.

Each app is scheduled to be processed three times to mini-
mize variability in the extracted footprints. Upon receiving
a task to process an app version, the worker schedules it to
the next available pipeline which marks the start and the end
of an analysis session, before and after an app is launched.
This involves: 1) installing the actual APK file on the emula-
tor, 2) coordinating database state so that the HTTPS proxy,
which is already connected, can attribute any observed traffic
to an APK, 3) instructing the DNS server to begin a DNS
packet trace, and 4) querying a special, non-existent domain
that encodes an identifier for the app analysis session. The
last step provides traffic delimiters to increase confidence in
associating traffic to the running app by marking a window
of time during which the app was active, which is used to
exclude any background requests.

We use a custom version of DroidBot [36] to dynamically
explore apps for three minutes, modified to launch apps with
Frida to intercept certain function calls. In particular, Frida
is configured to disable certificate pinning [54] by instru-
menting the standard method for programmatically creating a
javax.net.ssl.SSLContext that manages trusted authori-
ties [8], to automatically grant requested runtime permissions
with androidx.core.ContextCompat [4], and to disable the
FLAG_SECURE flag in views [9]. Instrumenting these methods
enables the analysis pipeline to correctly intercept HTTPS
traffic even if developers attempted certificate pinning, pro-
ceed with app exploration in the face of runtime permission
dialogs, and ensures DroidBot can take screenshots.

3.4 Identifying Expirations from Passive DNS

This section details the approach for identifying expirations
from passive DNS data based on knowledge of the domain
lifecycle. Algorithm 1 in Appendix C presents the same infor-
mation in the form of pseudocode.

As discussed in Section 2, passive DNS data comprises
DNS records annotated with the first and last time they were
observed, and how many times they were observed. We sum-
marize the passive DNS records into non-overlapping time
intervals during which DNS records were, or were not, con-
figured for an individual domain. These intervals were ob-
tained by extracting the first seen and last seen timestamps
for individual A, AAAA, CNAME, NS, SOA, MX, or TXT
records (Algorithm 1, Line 25), merging any overlapping time
windows within each category (Line 30), and then merging
the resulting time windows once more among all categories
(Line 32). While processing these intervals, we err on the side

of caution and truncate all timestamps to the granularity of
dates, and ignore gaps between successive intervals that are
under 5 days to account for transient errors or misconfigura-
tions. With this, we can determine whether a domain d was
configured with a DNS record at any time t, assuming t is
after the launch of the database in 2010.

Next, our approach looks for domains that have gaps of
at least 35 days in the merged passive DNS intervals. We
assume that such long gaps exist because the domains had
expired, and passed both the 30-day Redemption Grace Period
and 5-day Pending Delete durations, as we are not aware of
any scenarios that enable an individual to remove all DNS
records for a domain that they own. After such gaps (if any)
are identified for a domain (Line 36), we adjust them so that
the start of a gap is at least one year after the end of the prior
gap (Line 37). If any adjusted gap interval does not meet
the previous duration requirement of at least 35 days, the
gap period is excluded. This additional step reduces false
positives in detecting expirations because domain registration
periods are in integer intervals of (up to 10) years. Thus,
this approach does not account for phenomena such as early
domain deletions [14], as it inherently limits the number of
expirations to at most one per year.

We empirically verified the accuracy and granularity of
the passive DNS data from our provider, finding zero false
positives, and some false negatives that were caused by reg-
istrar behavior. However, false negatives do not hamper our
results — our findings present a lower bound, and worst-case,
analysis on the exploitability of the DNS footprints of apps.
See Appendix C for a more detailed discussion.

4 DNS Footprints

In this section, we describe the collected dataset, and char-
acterize high-level trends to describe a typical footprint. We
focus on studying the hijackability of the domains that com-
prise each footprint to quantify the feasibility of abuse.

4.1 Dataset

We scraped the 500 highest ranked apps in each of the 49
Google Play categories and filtered for the latest 10 versions
of these apps from the AndroZoo list downloaded on Decem-
ber 20, 2022, as described by the input generation process
described in Section 3. This resulted in 24,166 unique pack-
ages from Google Play. Accounting for the latest 10 versions,
we found 185,685 versions for 23,332 packages in the Andro-
Zoo list. We were able to successfully download 83.7% of
all versions, or 92.6% of all apps, from VirusTotal, and there
remain analysis sessions for 49.7% of versions, or 70.0% of
apps, downloaded from VirusTotal after filtering.

Apps that were not successfully executed could have failed
at any step — installation, app launch, or app exploration —

for a number of reasons, including compatibility (e.g., apps ex-
pecting different device architecture or Android API level, or
launching apps with Frida) and reliability in the emulators and
the apps (e.g., crashing or unresponsiveness). Furthermore, it
may be the case that apps were not explored “sufficiently”, or
at all, depending on the interactions between DroidBot and
the app. Reasons for inadequate exploration include insuf-
ficient runtime and splash screens (e.g., login screens) that
prevent further interaction with the app. However, these do not
hinder the goal of our study, which is to provide a quantified
lower bound on the threat posed by expired domain dependen-
cies. We argue that inadequate interactions with apps result
in smaller footprints and only contribute to false negatives in
general, but discuss this issue in more depth in Section 7.

We use the presence of extracted traffic as an indicator of
successful execution to preprocess the data before our anal-
yses. One such filter ensures that execution behavior was as
expected, and increases the confidence of attributing domains
to apps, by querying non-existent domains to mark the begin-
ning and ending of an app execution session, as previously
mentioned in Section 3; we exclude these and only keep do-
mains that were queried between these markers. Another filter
excludes domains found in DNS traffic for 99.35% of apps,
or 96.69% of versions, which we suspect or confirm to be
contributed by the Android operating system instead of the
apps. These domains include time.android.com, which is
used as an NTP server, connectivitycheck.gstatic.com
which is used to check Internet access with frequent heart-
beats, *.googleapis.com, and www.google.com.

In the rest of this work, we present results for 15,124 apps,
or 77,206 app versions, which are 70.0% apps, or 49.7% app
versions, of those found on VirusTotal. See Table 1 for a
summary of the number of apps and versions at each step of
the process, and Section D for confirmation that the resulting
dataset is representative of the Android app landscape.

4.2 Footprint Composition

After excluding domains for which we had no passive DNS
data, we found that the 77,206 versions of 15,124 apps query
for 22,695 unique domains across 10,279 unique eTLD+1s.
Consistent with real world expectations, the distribution of
the number of apps that use each domain has a long tail, as
do other distributions such as the DNS footprint size of apps
and the number of unique subdomains per eTLD+1. On av-
erage, the size of a first-order footprint of an individual APK
is 10.6 unique domains, or 6.7 eTLD+1s. Second-order links
contribute a significant additional 11.0% more domains and
10.6% more eTLD+1s. The risk of compromise and perceived
app functionality breakage may be greater when users navi-
gate webpages that are rendered in-app, because the size of the
supply chain only increases, which we confirm in Section 5.
Table 2 breaks down the average footprint size.

Table 1: App dataset; percentages reference the prior step.

Source Packages APKs

Google Play 24,166 (100%) -
AndroZoo 23,332 (96.5%) 185,685 (100%)
VirusTotal 21,612 (92.6%) 155,442 (83.7%)

Filtered 15,124 (70.0%) 77,206 (49.7%)

2008 2012 2016 2020 2024
Year

101

102

103

104

Nu
m

be
r o

f e
TL

D+
1s

eTLD+1 Status

2008 2012 2016 2020 2024
Year

100

101

102

103

Nu
m

be
r o

f e
TL

D+
1s

Expired Domain Use

2010 2014 2018 2022
Year

0

2

4

6

8

10

Pe
rc

en
t o

f R
el

ea
se

d
Ap

ps
/A

PK
s

Affected Apps

Registered ExpiredRegistered Expired First-Order Footprint
Both-Order Footprints

Apps
APKs

Figure 2: Registration status of eTLD+1s, focusing on expirations.

4.3 Expirations Throughout Time

In this section, we quantify the threat of expired domains
in the mobile ecosystem by measuring the percentage of
domains, apps, and APKs that are at risk throughout time.
To this end, we used the computed expiration periods for
all extracted eTLD+1 domains for apps in our dataset, and
deduced the domains that were expired on any given day d.
Following this, we used our DNS footprint data to extract the
set of APKs that depended on such domains, and filtered for
those that were released on or before d. The resulting data
represents the set of APKs that relied on domains which were
expired at d, and is represented in Figure 2.

The leftmost plot reports the registration status of domains
in our dataset at any given time. As our passive DNS provider
started collecting data in 2010, there is a perceived spike in
registrations at the beginning of 2010, and a perceived spike
in expirations at the beginning of 2011. After this, we observe
that there is a steady increase in the number of registrations,
implying that new eTLD+1s continue to be added to the DNS
footprints of apps. In contrast, the number of expired domains
remained relatively constant in the last 11 years, and is now
approximately two orders of magnitude smaller than the num-
ber of footprint domains ever registered.

The center and right plots represent the apps (in blue) and
APKs (in orange) that use at least one expired domain at any
given time, with a breakdown that illustrates the contribution
of additional domains that are contributed by second-order
links. We count an APK at time t if at least one domain in its
footprint is expired, and we count an app at t if at least one of
its APKs counts at t. The middle plot, which reports raw num-
bers of apps and APKs, shows an expected, non-decreasing
trend because the number of outdated APKs continues to grow.

Table 2: Average footprint size in our dataset. Second-order percent-
ages are percentage increases over the first-order size.

vs. Order First-Order Second-Order

Domains / APK 10.6 11.8 (+11.0%)
eTLD+1s / APK 6.7 7.4 (+10.6%)

Domains / App 25.6 28.4 (+10.9%)
eTLD+1s / App 13.9 15.4 (+11.1%)

Total Domains 22,695 33,323 (+46.8%)
Total eTLD+1s 10,279 16,758 (+63.0%)

Interestingly, the lines representing the apps and APKs slowly
diverge, with the number of APKs pulling ahead of the num-
ber of apps, suggesting that when common domains expire, all
versions with those domains are affected. The right plot repre-
sents the same data as percentages of the number of affected
apps affected at time t out of the number of apps that had been
released by t. Although the raw number of affected apps is
growing, we find that their percentage of all apps and APKs
ever released fluctuate, but remain under 10% at any point
in time. Overall, the average percentage of APKs using an
expired domain is 2.0% and 2.5% for first-order and second-
order footprints respectively, and the average percentage of
apps respectively is 3.3% and 4.2%.

4.4 Immediately Registrable Domains
In contrast to the previous temporal analysis based on the
computed expiration periods, we discovered 41 expired do-
mains — which we verified to be immediately registrable by
asking a registrar — in the dependencies of apps at runtime.
Based on the network traffic and DEX to Java decompila-
tion [62], we summarize the 32 domains whose purpose we
were able to identify in Table 3, which exclude the 9 whose
purpose we could not identify. This section discusses their
usage patterns and how such domains can be abused when
expired, and Section 4.5 examines several as case studies.
Domain Usage. We identified four different types of expired
domains based on how they were used by their respective
apps, from the network traffic and decompiled APK code:
APIs, Mirrors, Ads/Tracking, and Web Content. API was the
most common, with 32 of them — these domains host web
servers that respond to requests for app functionality, and
interface with the app database. The next type, Mirrors (N=7),
are pre-defined sets of domains that are used interchangeably
in first-party app code. They can be considered API servers,
but are separated because their expiration does not pose the
same risk as a regular API server, as a mirror domain would
only be responsible for a portion of the app’s userbase. The
third type, Ads/Tracking (N=3), is responsible for serving
advertisements or tracking user statistics. If the associated
ads/tracking libraries fail gracefully in the event that these
domains cannot be reached, app functionality should not be
affected. The last type, Web Content (N=1), is a rare type
of domain that serves web content inside the app, and thus

Table 3: Immediately-registrable domains that were successfully identified. Rankings were taken during data collection, but number of
downloads were taken from Google Play at the time of writing. The value “-” in “Downloads” means that the app is no longer available.

Domain(s) Usage Location # Apps # APKs Top App Rank Category Downloads In Latest

voodoo-ads.io Ads/Tracking Library 49 111 io.voodoo.holeio 6 Game/Arcade 100M+ No
melaniapps.com Ads/Tracking First-Party 3 3 best.beard.photo.editor 91 Beauty 500K+ No
wecareapps.net Web Content First-Party 2 6 com.meshref.pregnancy 232 Parenting - -

goneorbital.com API First-Party 1 6 com.gamehouse.slingosolitairegp 377 Game/Casino 500K+ Yes
cneplant.cn API First-Party 1 5 com.mini.wificam 454 Video Players - -

kok{lion,joy}.com API Library 1 5 alpha.hd.anime.girls.wallpapers 90 Comics - -
iphonequran.org Mirror First-Party 1 3 com.guidedways.iQuran 466 Books and References 10M+ No

islamicsoftwares.com Mirror First-Party 1 3 com.guidedways.iQuran 466 Books and References 10M+ No
klyapps.com API First-Party 1 3 com.kalay.equalizer 232 Music and Audio 5M+ No

ozzmogvt.com API Dynamic 1 3 com.free.vpn.ozzmo 307 Tools 1M+ No
badrniaimi.xyz API First-Party 1 2 com.manga.library.reader 97 Comics - -

bdjobstutor.com API First-Party 1 2 com.americabangla.nailpolish 402 Beauty - -
c2s4.xyz API First-Party 1 2 chapter2.fortnite.wallpapers.season6 82 Books and References 500K+ No

freegtw.com API Dynamic 1 2 com.free.vpn.ozzmo 307 Tools 1M+ No
amazon-node.com Mirror First-Party 1 1 com.free.vpn.ozzmo 307 Tools 1M+ No
cloudozzmo.com Mirror First-Party 1 1 com.free.vpn.ozzmo 307 Tools 1M+ No

cuebiqxxx.com API Library 1 1 com.weather.radar.forecast.livemaps 458 Weather - -
datingxa.com Ads/Tracking First-Party 1 1 comg.aml.cre.ati.vepl.ay 62 Art and Design - -

demo1json.shop API First-Party 1 1 com.AinoTdemon.slayer.game.guide 311 Books and References - -
firebaseu.com Mirror First-Party 1 1 com.free.vpn.ozzmo 307 Tools 1M+ No

firstbankmellat.com Mirror First-Party 1 1 com.free.vpn.ozzmo 307 Tools 1M+ No
freeozzmo.com Mirror First-Party 1 1 com.free.vpn.ozzmo 307 Tools 1M+ No

jatisulistiyo.com API First-Party 1 1 com.ajegalways.behelBeautyeditor 361 Beauty - -
lionosur.com API First-Party 1 1 com.lionosur.ironmanarcreactor 209 Comics - -

livefoothd.com API First-Party 1 1 com.pikaterapp.pikaterlivefoot 329 Libraries and Demo 10K+ Yes
masterbinary.trade API First-Party 1 1 com.zaunz.latestoutfitsideasforteenagegirls 301 Beauty 50K+ No

nexshome.com API First-Party 1 1 com.altec.shsm 371 House and Home - -
ozzmovpn.com API First-Party 1 1 com.free.vpn.ozzmo 307 Tools 1M+ No

sourtimeprime.com Mirror First-Party 1 1 com.free.vpn.ozzmo 307 Tools 1M+ No
tekoiaiot.com API First-Party 1 1 com.tekoia.sure.activities 107 House and Home 10M+ No

unbwebgvt.com API Dynamic 1 1 com.free.vpn.ozzmo 307 Tools 1M+ No

control of such domains would enable arbitrary web content
in affected apps.

Domain Location. In addition to identifying how each do-
main was used, Table 3 also identifies in which parts of the
apps these domains were used, marking whether the domains
were found in first-party app code (First-Party), third-party
libraries (Library), or not at all (Dynamic). Categorization
for each domain was performed by finding exact matches for
the eTLD+1 domains for each app. Then, after considering
the app structure, package names, and similarities with other
apps that use the domain, we labeled each domain. Most of
the domains (25) were found directly inside first-party code or
resources (e.g., strings.xml), with 4 found in app-external
library code, and 12 not found at all. As there is no context
for the 12 domains, we were unable to identify their purpose,
except for a select few used by one app as API servers. We dis-
cuss several Library domains in greater detail in Section 4.5.

Root Cause. With the proliferation of the number of apps
on the market and the long-tail distribution in app popularity
and usage, there exist many domains that are registered and
configured for specific apps. Thus, when these less-popular
apps are abandoned by their developers, the accompanying
domain will be left to expire. This hypothesis is supported by
Table 3 — 11 domains are used by apps that are no longer in
the Google Play Store — and the phenomenon contributes the
largest portion of expired domains by number. On the other
hand, domains that are integrated with SDKs that are used
by many apps can also be left to expire if the SDKs change.
The latest versions of the Voodoo apps that were affected by
the expired domain voodoo-ads.io no longer use the same
SDK, and the Cuebiq SDK that relied on cuebiqxxx.com

has been deprecated. Similarly, apps that overhaul their code-
base can change their dependencies, and developers do not
continue to re-register domains that were used in older ver-
sions. Of the 11 apps that are listed in “Top App” and still
available on Google Play, 9 of them have changed their
code in their latest versions such that the domains are no
longer statically defined (“In Latest” value is “No”). Interest-
ingly, the app chapter2.fortnite.wallpapers.season6
is now a racing car game in its latest iteration. In contrast,
the latest versions of com.pikaterapp.pikaterlivefoot
and com.gamehouse.slingosolitairegp contain the ex-
pired domain. In fact, the former app has only one version
on AndroZoo, and was the latest on Google Play at the time
of writing; the latest version of the latter app was part of
our dataset but failed to execute on our infrastructure. Thus,
these two apps are not included in the analysis described in
Section 5.2 (they were also recently removed from Google
Play). Overall, it appears that the domains were left to expire
because of app abandonment, SDK changes, and app changes.

4.5 Immediately Registrable Case Studies

This section provides concrete details of how several imme-
diately registrable domains from Table 3 can be abused as
supply chain attacks from manual investigation of the identi-
fied app versions that was performed at a later date.

Usage: APIs. We highlight several API domains used
by the remote camera viewer com.mini.wificam,
IoT device managers com.altec.shsm and
com.tekoia.sure.activities, and live stream viewer
com.pikaterapp.pikaterlivefoot. The first app, ver-

sion 25.0.0.0.20, contacts p.cneplant.cn at the path
api.php?type=6&version=<vers>, to determine if an app
update is available. We verified that control of this domain
can disarm this built-in version control logic by sending
responses that indicate no updates exist. From inspecting the
decompiled code, com.altec.shsm, version 0.0.8, uses the
domain app.nexshome.com for its login functionality and
IoT device management. However, we found that the login
functionality was actually moved into a third-party SDK
(which sends login credentials in plaintext to a currently
non-expired domain) and a significant portion of the API
class that contacts app.nexshome.com is dead code. It does
send one request to the domain at /smart/share/getShare
to retrieve devices, but it is not properly populated with the
values for userId and pw_session, even if authenticated.

In contrast, com.tekoia.sure.activities relies on
tekoiaiot.com for its primary API and user database.
On startup, it fetches a user database from the domain
geo-service-userdb.tekoiaiot.com and prevents fur-
ther interaction with the app if no valid zip file is down-
loaded. We verified that control of the tekoiaiot.com
domain can push an arbitrary zip file to user devices
on app startup — which the app will attempt to read as
a database — and respond to several database API re-
quests. Another app com.pikaterapp.pikaterlivefoot,
for sports video streaming, version 2.0.9 depends on the
domain livefoothd.com. The app requests video con-
tent from mobtv.livefoothd.com on startup at the path
api/get_category_posts, and also links to its privacy pol-
icy on this domain. We verified that this endpoint grants
the ability to change the content (e.g., name via the value
in channel_name and preview images via channel_image)
and the video stream source via channel_url in the app.

Usage: Mirrors. This next category describes domains that
are pre-defined and used interchangeably inside first-party
app code, and we detail the two apps com.free.vpn.ozzmo
and com.guidedways.iQuran that used domains in this
manner. The former app, version 1.0.6, is a VPN service app,
and contains a class that contains a set of IP addresses and
domain names. When the class is instantiated, it adds the do-
main api.ozzmovpn.com, one randomly-selected IP address,
and three randomly-selected domain names, to an instance
variable. The servers in this variable are then used as the
destinations for API requests, with the API key and function
names such as signup and admob in the request URL. We
verified that control of some of these domains would grant the
ability to interact with a portion of these requests. In contrast,
the latter app com.guidedways.iQuran version 2.5.4
provides a digital religious text, and offers recorded readings
of the text that can be downloaded and played. The app is
bundled with several domains that act as download mirrors
for redundancy, and the expired domains iphonequran.org
and islamicsoftwares.com are mirrors for audio data.
When a user opts to download audio files, the app requests the

path /downloads/iphone/audiov2.2/0/<num>.tar.gz,
caches it in local storage, and plays it aloud. We verified that
control of these domains enables pushing arbitrary audio to
user devices. Audio content can agitate audiences, or can
be intentionally crafted to exploit vulnerabilities in libraries
such as audio decoders [65].

Usage: Ads/Tracking. The third category includes domains
that are used for advertisements or tracking. Control of the
most notable domain in this category, voodoo-ads.io, would
position an adversary to expand their influence and maximize
their cost efficiency by gaining a foothold into an advertis-
ing network used by 111 versions of 49 apps with hundreds
of millions of downloads, one of which was even ranked
sixth in its arcade game category. We verified that the re-
sponses from this domain are used by the app to determine
which advertisements are shown to app users: the domain is
used as the primary backend in an SDK from the developers,
with subdomains such as splash-screen, data-collector,
addelivery-engine-api, front-logs, and paths such as
/api/.../request-campaign and /request-ad.

Another case involves the app
best.beard.photo.editor version 1.0 and the do-
main melaniapps.com. This app fetches advertisements for
other Google Play apps it wishes to advertise from its own
domain at /iApp/AdService/getAd.php before integrating
with Google Ads to render them. In particular, it expects a
JSON response from getAd.php with the keys list and
url. The values in list are populated with objects with
keys id (app id), nm (app name), and ic (icon to display).
Finally, a click listener is attached to the ad view so that it
opens the Google Play URL for the app. We verified that the
JSON response determines the ads that will be displayed, but
discovered that the ads are not actually displayed because of
an error in the Google Ads integration.

Usage: Web Content. In contrast to the prior category, ob-
taining control over domains in this category would en-
able adversaries to directly change the content inside apps.
The single domain we found, wecareapps.net, is used
by the apps com.meshref.engpregnancy version 47 and
com.meshref.pregnancy version 46, to host web content
that is rendered inside the apps. In particular, this app directly
loads the URL wecareapps.net/pregnancytracker/...
in an embedded WebView that can be accessed from the
main navigation menu for the app. In addition to this, the
app also directly includes images from the site in the default
posts that are generated when pressing the "Share" button
for a social media platform. We verified that control of the
wecareapps.net domain enables an attacker to send arbi-
trary HTML content and JavaScript code to this WebView.

Location: Library. Aside from the domain
voodoo-ads.io which was previously highlighted,
the domain cuebiqxxx.com hosts the primary API server for
Cuebiq’s location data and analytics SDK, and was used in

the app com.weather.radar.forecast.livemaps version
3.0. The domain has since expired, with Cuebiq deprecating
their SDK [61], but control of this domain would grant access
to user traffic from older apps that still use the SDK. In
contrast to these domains used for ads and analytics, the app
alpha.hd.anime.girls.wallpapers directly embeds the
expired domains koklion.com and kokjoy.com in a library
at resources/lib/<arch>/libtest.so. The domain
kokmob.com is also found in the same files, although it is
not expired. The three domains are labeled with the symbols
“mainServer”, “mainServerIDx2”, and “myADsServer”
respectively, and the first two domains are APIs.

5 Footprint Stability

In this section, we present insights on the stability of DNS
footprints of apps with respect to time, updates, and emulators.

5.1 App and APK Lifespans
As can be seen from the case studies we presented in Sec-
tion 4.5, even if only one domain in an app’s footprint has ex-
pired, the entire app is at risk of compromise. By determining
at what time after release apps become at risk of compromise
through expired domains in their footprints, we can estimate
the lifespan of any particular app or APK.

Figure 3 presents the result of this analysis as a cumulative
distribution of all apps and APKs we analyzed, with respect
to their DNS footprint lifespan — the number of days, from
release, until an eTLD+1 in an app’s or APK’s footprint ex-
pires. Similarly to other figures, the contributions of domains
in second-order footprints are represented as another series in
the plot. As previously discussed in Section 3, annotations for
release dates were aggregated from multiple sources and the
earliest was chosen, and expirations were detected by scan-
ning for long gaps in the passive DNS configuration history
of the domain. If all domains in an app or APK’s footprint
never expired after they were first registered, the app or APK
contributes to the remaining percentage that totals to 100.

On the one hand, this analysis shows that 98.3% of all
APKs, across 95.1% of all apps, that we analyzed are not
at risk of compromise via an expired domain in their DNS
footprint. On the other hand, even though the percentages may
not be large, this means that 1,232 of all APKs, across 738
of all apps, are at risk. Concretely, 0.7% of all APKs, across
2.4% of all apps, have at least one domain in their footprint
expire after one month, and this increases to 1.1% of all APKs,
across 3.6% of all apps, after twelve months.

Interestingly, the lifespans of APKs and apps are stratified
according to the category ranking of the app, as can be seen
from the lower two plots in Figure 3. These present the same
data as their top counterparts, but with an added dimension of
the app category ranking. The individual sample size for each
ranking is denoted in the legend, and we observe that for any

15
12

4)

Pe
rc
en
t

of

A
p
p
s

(N

4.00

3.50

3.00

2.50

2.00

4.50

4.00

3.50

3.00

2.00

1.50

App Footprints
|

73
73

1)

0 10° 10! 10% 103

P
e
r
c
e
n
t

of

A
P
K
s

(N

0 10° 10! 10-103
The First Day An eTLD+1 Expires

— First-Order Footprint

~ Second-Order Footprint

1.20

1.00

0.80

0.60

1.60

1.40

1.20

1.00

0.80

0.60

0.40

.

.

APK Footprints

0 10° 10! 102 = 103
The First Day An eTLD+1 Expires

Ranks [1,250)

Ranks [250,500)

Figure 3: Computed lifespan of apps. Missing percentages corre-
spond to apps with domains that have never expired or domains with
no passive DNS data.

given amount of time after release, the proportion of lower-
ranked apps that experience an expiration in its footprint is
greater than that of higher-ranked apps. This trend holds true
even with more fine-grained rank groupings (e.g., 5 groups
for each 100 ranks), and is caused in part by lower-ranked
apps relying on expired domains, on their update day.

Case Study: “Dead-on-Arrival” Domains. In our results,
we found numerous instances of APKs contacting domains
that were supposedly expired on the release day of the APK,
thus contributing to the fraction of apps and APKs at x = 0
in Figure 3. After investigation, it appears that some of these
instances were false positives, and have been excluded. One
case appears to be caused by web services that trigger requests
to secondary services. Affected APKs were contacting do-
mains whose first-ever registration was several years after the
release date of the APK, suggesting that a live component used
by the APK caused this seemingly-contradictory and anachro-
nistic behavior. Examples of these occurrences include the
domains liftoff-creatives.io, transparency.google,
and app-measurement.com, which were found for 571, 52,
and 52 different apps respectively. Another case that was
flagged as a false positive involved eTLDs of organizations
that automatically provision eTLD+1 domains for users, re-
sulting in a list of eTLD+1s with very high cardinality. Ex-
amples of such eTLDs include cloudfunctions.net used
in Google Cloud Functions, myshopify.com used in Shopify,
and github.io used in GitHub Pages. The provider of our
DNS data routinely scrubs data records that are suspected
to be a result of DNS wildcard configurations [60], and it
appears that their scrubbing algorithm flagged the records
of such eTLDs because of the high-cardinality set of subdo-
mains. This hypothesis is supported by the fact that many
of these products assign random identifiers as part of the
eTLD+1. Other instances are difficult to evaluate in general,
but we were able to manually confirm that some appear to be
true positives from querying a historical WHOIS product and

13
30

)
P
e
r
c
e
n
t
a
g
e

of

A
p
p
s

(N

100

80

60

40

20
-5, 16.77%) —— First-Order

coo Second-Order

—100 0 100 200 300 400 500
Net eTLD+1 Additions in Nine Updates to Footprint

600

Figure 4: Cumulative distribution of net eTLD+1 additions in foot-
prints for apps with 10 versions.

observing a gap during the expected release period, and our
manual analysis into the registrable domains at runtime.

5.2 Stability Throughout Updates

It is imperative for developers to not only consider the security
of the latest version of their apps, but also the security of older
versions. A large-scale study from 2023 found that more than
20% of the users for more than 630K app versions intention-
ally do not update their apps, and more than 20% of users
for 3.5K app versions downgraded their app versions [37].
From the perspective of developers, apps with stable foot-
prints across updates would likely be easier to manage than
those with volatile footprints. In this section, we characterize
how the footprints of apps change throughout their updates.

We consider only the 1,330 apps for which we were able to
successfully download and execute all the latest 10 versions as
reported by AndroZoo. This sample was selected in order to
present an analysis based on successive, contiguous versions
of an app. The other classes of apps — apps for which we were
not able to download and execute all the latest 10 versions,
and apps that have fewer than 10 versions — are excluded
because their versions may not be contiguous.

Net eTLD+1 Additions to Footprints. To start, we investi-
gate how often domains are added to an app’s footprint as
it receives updates. To do so, we order each APK of an app
by its version number and compare the footprint of one ver-
sion against the next, successively tracking the domains that
were introduced, removed, and the same from the footprint
of one version to that of the next. We plot the net number of
eTLD+1 additions with a cumulative distribution in Figure 4
for both first-order and second-order footprints. This net addi-
tion statistic minimizes the potential of execution variability
between one version to the next, tracking the overall number
of changes in footprint size in each update of an app. As seen
from the annotations in the plot, for 71% of apps, they expe-
rience up to five net additions to their footprint across their
latest 9 updates. Although a change of at most five may seem
small, we can compare this to the average DNS footprint size
found in Table 2, which is 15.4 for an app and 7.4 for an APK.
Thus, for 71% of apps, they experience almost as many net
additions to their footprint size as the average footprint size

of an app in 9 updates; for 29% of apps, they can experience
more changes than the average footprint size.

Case Study: The Guardian (com.guardian). The app re-
sponsible for the anomalous value of over 500 net eTLD+1
additions in Figure 4 is The Guardian, an app by the British
daily newspaper. In one update — from version 6.90.13685
released on 2022-09-13 to 6.91.14140 released on 2022-09-
27 — the app added 40 new eTLD+1 domains to its first-order
footprint, resulting in the addition of 535 new eTLD+1 do-
mains to its second-order footprint. These domains remained
in the footprints of all subsequent versions we tracked, result-
ing in the egregious long tail in the second-order series.

Updates vs. Expirations. A major question we sought to
answer is whether users can completely prevent any risk of
compromise via expired domains if they could always up-
date their apps on the day of a new release. We found several
instances that empirically show that it is not possible to com-
pletely protect oneself, even if there is an unlikely guarantee
of updating apps on the same day as releases. Table 4 enu-
merates the details for the six instances of domains in APK
footprints expiring before the next version was released, yet
the expired domain was still found in the footprint of the
next version. Users of those apps would not have been pro-
tected from the risk of using expired domains, even if they
immediately updated their apps. Two of the cases reference
an eTLD+1 domain whose eTLD is not the same as their
TLD — funny-videos-2018-8b162.firebaseapp.com
and vhx-notifications.herokuapp.com — indicating
that these are custom public suffixes, and they are located
in first-party app code. In particular, the first domain was
not found in decompiled Java code, but does appear in a
URL (in a DEX file) with the path /configs-sdk28/, in-
dicating it may be to fetch a configuration file. The second
domain appears in a URL (in decompiled source code) with
the path /api/subscriptions for a messaging and push no-
tification management class. These domains are associated
with the Firebase and Heroku products, where subdomains
are uniquely associated with projects, and generally contain
random strings in their name to prevent collisions, rendering
it difficult or impossible to obtain the same subdomain for an-
other project. However, in Heroku it is possible to configure a
custom and predictable subdomain, which is why that domain
does not have a random substring. This introduces the risk of
a subdomain takeover, which is rightfully acknowledged with
a warning on the Heroku documentation page [27]. Overall,
these findings offer empirical evidence that version updates do
not always resolve problems with using dependencies whose
domains have expired.

Security of Older Versions. Another question we want to
investigate is whether later versions of apps are more secure
than older ones. To answer this, we revisit the set of 41 ex-
pired, immediately registrable domains that were mentioned
in Section 4.3. We filter for the sample of apps that have these

Table 4: APKs that did not fix an expired domain in the next update. “Previous Release” lists the release date for the latest version of the
app when the domain expired, and “Next Release” lists the date for the next update which still used the expired domain. “Next Registration”
indicates the date of the next registration after the listed expiration date; an “N/A” value indicates that the domain was still expired at the time
of analysis. Downloads were taken from the Google Play Store at the time of writing.

Package Ranking Downloads Previous Release Next Release Domain Location Expiration Next Registration

com.ringpro.popular.freerings Personalization, 11 10M+ 2022-07-06 2022-08-12 funny[...].firebaseapp.com First-Party 2022-07-21 N/A
com.tasmanic.camtoplanfree Business, 133 10M+ 2022-07-30 2022-10-20 credebat.com Dynamic 2022-10-10 N/A

com.olympiatv Health/Fitness, 180 10K+ 2020-12-05 2021-06-18 vhx[...].herokuapp.com First-Party 2021-05-26 N/A
com.smarttools.compasspro Travel, 202 500K+ 2022-03-16 2022-06-19 spirituallovespells.com Dynamic 2022-04-20 2022-09-24

com.cast.iptv.player Video Players, 250 50K+ 2022-10-11 2022-10-16 royaldocksrainbows.com Dynamic 2022-10-14 2022-11-23
com.androidwasabi.livewallpaper.christmas Personalization, 279 500K+ 2015-07-03 2015-12-24 cognitivlabs.com Dynamic 2015-07-26 2015-09-11

2022-05 2022-12
0

1

2
air.com.games2wi...

2022-09 2022-12

amazon.shop.barc...

2022-03 2022-12

areamovil.avianc...

2022-01 2022-11

beatmaker.edm.mu...

2022-09 2022-12

ch.mcpipegames.g...

2022-08 2022-12

com.CherryPopGam...

2022-04 2022-12

com.Gcenter.Defe...

2022-10 2022-12

com.Nanali.Fores...

2022-07 2022-12
0

1

2

Ex
pi

re
d

eT
LD

+1
s

com.Spider.Hero

2021-09 2022-11

com.ap.advml

2021-11 2022-11

com.ap.cleveland

2021-10 2022-11

com.ap.oregon

2013-02 2019-10

com.guidedways.i...

2022-08 2022-12

com.kaisquare.lo...

2022-02 2022-12

com.kait.android...

2021-03 2022-10

com.khnl.android...

2020-09 2022-08
0

1

2
com.kplc.android...

2018-12 2020-03

com.tekoia.sure....

2022-03 2022-11

com.wbrz.android...

2020-07 2022-11

com.wbtv.android...

2016-07 2022-11

com.wcax.android...

2021-05 2022-12

com.wsfa.android...

Figure 5: Apps for which we have footprints for all 10 versions, and used at least one expired domain.

domains in their footprints, and then filtered one more time
for apps for which we successfully extracted footprints from
all 10 versions. Then, for each of the remaining 22 apps, we
annotate each version with the number of expired domains
that were in its footprint. The results are displayed in Figure 5.

We highlight several observations. For some apps, we find
that their earlier versions are affected, whereas their latest
versions are not (com.ap.oregon, com.kait.android...,
com.ap.advml...); however, in other apps, we observe that
expired domains are found in the later versions, but not in their
earlier ones (com.wbtv.android..., beatmaker.edm...).
In all of these cases, the latest version of each app in this
sample are not the ones that are susceptible to the threat of
expired domains. Additionally, several apps show successive
versions that are susceptible to the same expired domain,
suggesting that the footprints of those contiguous versions are
more similar as compared to their disjoint ones.

5.3 Footprints Across Emulators

Compared to the Android Studio Emulator used in the infras-
tructure (Section 3) which is intended for app development,
the Cuttlefish emulator is designed to provide behavior that
is functionally equivalent to a physical device [5]. We de-
veloped a smaller-scale, but equivalent, version of the main
infrastructure that uses Cuttlefish to investigate any differ-
ences in footprints based on device choice.

We use this version to extract the footprints from two ran-
dom samples of 500 APKs on a Cuttlefish device running An-
droid 11. The first random sample consists of apps from which
the main infrastructure was able to successfully extract foot-

prints, to compare how the footprints extracted from APKs
might differ based on whether the apps were launched on the
Android Studio Emulator vs. Cuttlefish. The second consists
of apps from which the main infrastructure did not success-
fully extract footprints, to approximate how many more apps
could have been analyzed with Cuttlefish.

App Functionality Based on Emulator. First, we wanted to
understand what portion of apps might function differently,
with respect to the domains they contact. For each APK in
the two samples, we aggregate all eTLD+1 domains in their
footprints, and label each domain based on the device where
it originated: Emulator if the domain was only present in the
original dataset, Cuttlefish if it was only in the Cuttlefish
data, or Shared if it was found in both datasets. Then, we
compute the share of each label out of the total number of
unique eTLD+1s for the app. Finally, we assign a class to the
APK with threshold t, if there exists a label whose proportion
is greater than t. For example, if we observe traffic to do-
mains {A,B,C,D}, with {A,B,C} from the original dataset,
and {C,D} from the Cuttlefish data, then the app would be la-
beled Emulator for any threshold t ≥ 0.5. If no label is larger
than the threshold, the APK will be classified as Unclear.

The results of this analysis, with varying thresholds from
50% to 100%, are summarized in Figure 6. First, we high-
light the size of the Cuttlefish class, and the presence of
the “Originally-Failed” line, as 422 of the 500 APKs in the
originally-unsuccessful sample succeeded with Cuttlefish and
contributed to the Cuttlefish class at every threshold. The
originally-successful APKs lie above the “Originally-Failed”
line. For these apps, each class is approximately the same size
at the 50% threshold, and the Unclear class increases in size

50% 60% 70% 80% 90% 100%
Classification Threshold

0

200

400

600

800

Nu
m

be
r o

f A
PK

s (
To

ta
l =

 9
11

)

Unclear
Emulator
Shared
Cuttlefish
Originally-Failed

Figure 6: Class distribution for Cuttlefish samples.

as the threshold increases. Overall, the classes in the 100%
threshold represent a group of apps that does not function on
the Android Studio Emulator, another that does not function
on the Cuttlefish emulator, a third that functions identically, re-
gardless of the two emulators, and a fourth that may function
differently based on the device.

Footprint Differences. Next, we investigate the differences
in the footprints. We note that the Cuttlefish infrastructure
failed to extract network traffic from 54 of the originally-
successful APKs, but we found that 11 of these were caused
by an environmental difference. Footprints extracted with
the Android Studio Emulator from the main infrastructure
included traffic to the domains alt-*.mtalk.google.com.
These domains are attributed to Google Chat, Firebase Cloud
Messaging, and push notifications [40, 52], and they were
not filtered out because they were not as ubiquitous as the
globally excluded domains described in Section 4.1. There
was no traffic to these domains on Cuttlefish, and the original
footprints of those 11 APKs consisted of traffic to only these
domains. After accounting for this environmental difference,
the number of APKs that failed to execute on the Cuttlefish
emulators is 43. For the originally-failed sample, 422 of them
succeeded on Cuttlefish as previously described.

Next, we quantify the value that the Cuttlefish dataset
brings to the original dataset, in terms of new domains that
are contacted. The originally-successful sample produced a
greater number of unique domains (925) than the originally-
failed one (519). Compared to the original 9,525 eTLD+1s
in the DNS traffic in the original dataset, these numbers are
reduced to 243 and 171 new unique domains respectively
for each sample, or 401 new unique domains overall. This
corresponds to contributing an additional 4.21% to the set of
domains. The originally-successful sample contributed one
new expired domain, and the originally-failed one contributed
two, each of which were used by one APK.

Overall, the results suggest that Cuttlefish devices are able
to launch many apps that the Android Studio Emulator can-
not, but most of the domains that are contacted by apps on
Cuttlefish are also contacted on the Android Studio Emulator.
Domains in Cuttlefish footprints follow a similar long-tail dis-
tribution, with a small percentage of popular domains used by
a large percentage of apps, and a majority of one-off domains
used by individual APKs.

6 Related Work

In this section, we review and discuss differences in other
works in broken dependencies and mobile app analysis.
Broken App Dependencies. Our work primarily relates to
studies of mobile app dependencies. In the space of Android
app dependency analysis, Pariwono et al. conducted a large-
scale static analysis of 1.1M Android apps and uncovered that
7.3K apps were associated with 3.7K dangling domain names
and hardcoded IP addresses, with 13 of them having been
installed more than a million times [53]. Similarly, Mutchler
et al. performed a large-scale static analysis study of 1M
mobile apps that use WebView, and found that 28% of the
sample contained at least one vulnerability, including some
that directly load expired domains [48].

Although our study investigates a smaller sample of unique
applications as compared to these two works, we do so dy-
namically with Android emulators, and present longitudinal
analyses across time and version history, which enabled us to
investigate how the risk of expired domains in DNS depen-
dencies varies with time ad updates. We present statistics on
the overall landscape of Android apps regarding the usage of
expired domains at any point in time, and shed light on the
lifespan of apps with respect to their dependencies. Further-
more, we quantify the additional risk imposed by higher-order
links, and report on the update behaviors of apps with respect
to their dependencies.
Robust App Dependency Enumeration. Another space fo-
cuses on accurate enumeration of mobile app dependencies.
Zuo and Lin [75] used symbolic execution to enumerate mo-
bile app backend URLs, and then identified malicious URLs
by cross-examining public blocklists. Alrawi et al. [2] builds
on the work of Zuo and Lin, and assesses the security stance
of the remote servers with vetting techniques. These works
study the malicious nature and vulnerabilities of backend
servers, whereas our work provides insights into the influence
of time and updates on app dependencies, and the extent to
which expired domains of dependencies are a threat to apps.
Residual Trust in Other Contexts. Others have also studied
this problem at a more general level, beyond the scope of
Android apps. Lever et al. coined the term residual trust to
mean the implicit transfer of the trust held in domain names
across changes in domain ownership, and proposed a defense
mechanism to identify changes in domain ownership [35].
So et al. found that there is great potential for abuse of resid-
ual trust without requiring heavy financial investment. After
re-registering previously-popular expired domains and con-
figuring honeypot services, their domains attracted requests
from millions of IP addresses, and they were able to deter-
mine the type of services that were previously hosted on more
than half of them [63]. Liu et al. investigated a contributor to
residual trust: dangling DNS records. They identified three
new attack vectors in a large-scale measurement study, and
uncovered hundreds of such dangling records in the top 10K

Alexa and edu domains [38]. Similarly, Borgolte et al. found
that it was time- and cost-efficient to allocate IP addresses to
which dangling DNS records resolve on public clouds [17].
There are also studies of exploitability of expired domains in
more specific domains: email [26], remote JavaScript [50],
and Content Security Policies [58].

These works quantify the exploitability and severity of the
consequences of expired domains and residual trust in gen-
eral or in specific contexts. In comparison, the core of the
problem that our work focuses on is the inherent incompati-
bility because of the dual nature of Android apps that contain
both locally-installed static and Internet-accessing dynamic
components, with respect to time. If an app is not kept up to
date, the dynamic components may attempt to access services
that change or no longer exist, thus manifesting as a similar
problem that is studied in these related works.

Mobile App Analysis. Another major line of related work is
analysis of mobile applications. Program analysis techniques
can be broadly categorized as static or dynamic, depending
on whether they execute the source code. Both categories
have their strengths and weaknesses, and one may do better
than the other in certain contexts, typically leading to efforts
to design approaches that leverage both types of analysis.
In this work, we relied on Li et al.’s DroidBot [36], which
generates state transition models on the fly to produce UI-
guided inputs, to execute the mobile apps in a sandboxed
environment to extract DNS dependencies at runtime. Other
similar approaches include SmartDroid [74], a hybrid static
and dynamic approach to reveal UI-based trigger conditions,
IntelliDroid [72], a generic Android input generator that can
be tailored to specific dynamic analysis tools, and DroidMate
1 [32] or 2 [16], input generation tools that were designed to
be robust, extensible, and easy to use.

Higher-Order Links. The approach that we use in this work
is based on extracting the network footprints of APKs, and
we include domains found in HTML responses to our apps
as second-order links. There is a large body of prior work
that investigates the security risks posed by techniques such
as WebView, which is the source of our second-order links.
Luo et al. conducted one of the first studies on the secu-
rity implications of using WebViews as lightweight, in-app
browsers in 2011, discovering that malicious WebView pages
can attack benign apps, and vice versa [39], and this line of
WebView vulnerability analyses continues today, with a re-
cent study focusing on identity confusion in WebView-based
app-in-app ecosystems [73]. Another work that suggests the
importance of higher-order links in the attack surface of an
app is a study conducted by Sanchez-Rola et al. which fo-
cuses on the opaque interactions that occur when clicking
web elements, often performing undesired actions [59].

Passive DNS. Another main focus of our approach is in de-
ducing periods of expiration for the extracted domains us-
ing passive DNS data. Prior works have relied on passive

DNS data for many tasks, such as discovering malicious do-
mains [15, 33] and identifying IoT devices [55]. Similar in
nature, Barron et al.’s study of early domain deletions [14] is
similar in nature to our methodology of identifying expiration
periods and face similar challenges, except with historical
WHOIS data at its base. Additionally, other works use the
(in)stability of DNS infrastructure for security-related detec-
tions, such as in the design of the Alembic algorithm by Lever
et al. [35] to detect domain ownership changes.

Our work focuses on quantifying the impact of the threat of
expired domains on the mobile app ecosystem via longitudinal
analyses. We do not extensively focus on the vulnerabilities,
and types of security risks, that can occur from rendering web
content in an app, or characterize domain expirations in depth;
instead, we centered our analyses on quantifying the fraction
of the mobile app ecosystem that is at risk of compromise via
supply chain attacks on their network dependencies.

7 Discussion

In this work, we systematically quantified the risk of the use
of expired domains in a large-scale analysis of the dependen-
cies of 77,206 versions of 15,124 unique Android apps that
were well-distributed across categories, ranks, and versions,
using a scalable and efficient dynamic analysis runtime and
temporal analysis methodology. We reported on insights re-
garding expired domain dependencies both at a snapshot in
time, and longitudinally throughout time and app updates by
leveraging passive DNS data.

Summary of Key Findings. Our analyses demonstrate that,
on average, several hundred footprint domains are expired,
and such domains are used by 2.5% of APKs or 4.2% of
apps at any point in time. We uncovered that 41 domains in
the footprints of 309 APKs across 149 apps were publicly
registrable at runtime. Such apps included those that were
ranked within the top ten of their categories, with more than
one hundred million downloads, and occasionally were the
latest versions. Furthermore, by leveraging passive DNS data,
we estimate that 0.7% of APKs have at least one domain
in their footprint expire within one month of their release.
The footprints of apps can experience drastic change across
updates: 29% of apps experience approximately the same
number of changes to their footprint as the mean footprint
size of all apps, in 9 updates. Finally, we find that updates
do not always fix problems with expired domains in previous
versions, even for highly-ranked apps with over ten million
downloads. In addition, the latest app version appears more
secure than any of its older versions.

7.1 Limitations & False Positives

We acknowledge that our methodology is constrained by sev-
eral factors, but we mitigate their impact and argue that our

high-level findings stand true regardless of these limitations.
The main limitations of our work are the data sources and
footprints, and that we do not have ground truth with which to
evaluate our proposed methodology for detecting expirations.

App Sample. Although we did not use different emulator
configurations to increase app coverage, or account for up-
date frequency in the app sample, the resulting dataset is
well-distributed across categories, rankings, and number of
versions, suggesting that there is no bias to a specific class of
apps, and the possibility for larger footprints only frames the
findings reported in our study as lower bounds.

Dynamic Analysis. Another limitation is that our approach
only uses dynamic analysis, and we are unable to bypass
splash screens or login screens, which may have prevented
us from seeing more “interesting” domains that may have
been uncovered with static analysis. Additionally, dynamic
analysis of older versions of apps can result in DNS footprints
that are different from their footprints at release. However,
our footprints are accurate representations of the supply chain
of apps, at their time of extraction. It is well-known that users
do not always update their apps, and footprints of older app
versions are representative of this subset.

Capturing Traffic. A different point of concern may be about
the traffic we captured. Our HTTPS proxy was configured
via an emulator setting, instead of via transparent proxying
(e.g., iptables) so it does not intercept HTTPS traffic from
custom network clients that disregard system-level proxy con-
figurations, but the captured traffic was sufficient for our anal-
yses. Also, we disabled certificate pinning, and although it
is possible for certificate pinning to defend against domain
re-registration attacks, its disadvantages outweigh its benefits,
which has caused it to be deprecated in multiple contexts,
including in Android [7, 44]. Furthermore, our results are ob-
tained from the Android Studio Emulator instead of physical
devices, but we are confident in our overall results because of
the results from the Cuttlefish experiments (§5.3).

Deducing Expirations. Our approach that deduces expira-
tions from passive DNS records does not have ground truth.
However, Farsight is one of the leading commercial providers
in the industry, we empirically verified the accuracy and gran-
ularity of their data (described in depth in Appendix C), and
accounted for “dead-on-arrival” cases in Section 5.1. In gen-
eral, because we incorporate the context of the domain life-
cycle into our fundamental approach by scanning for long
gaps in DNS configurations that are at least one year apart,
we limit the number of detected expirations to one per year.
Furthermore, the high-level results from our passive DNS
approach aligns with the results we obtained from checking
for re-registrable, expired domains at runtime. Appendix E
further discusses the shortcomings of historical WHOIS data.

7.2 Looking Forward
Our work demonstrates that the threat of expired domains
is ever-present, particularly given the nature of the mobile
app ecosystem in which outdated versions are commonplace
among end users. Dependency management should be an
integral part of the development and maintenance lifecycle.
Ideally, with the appropriate infrastructure and code logic,
developers should verify the integrity of dependencies be-
fore attempting to connect and send data. Unfortunately, past
works that have studied the impact of expired domains found
that outdated software tend to blindly attempt to connect to
a static list of remote dependencies with potentially private
information of end users [63]. Furthermore, developers often
use third-party libraries that dynamically pull in additional
dependencies (e.g., advertising libraries for in-app monetiza-
tion), making it difficult to map out all dependencies.

In light of our finding that updates do not always prevent
an app from using an expired domain, we argue that the intro-
duction of version control logic is a step in the right direction,
but instead of merely ensuring that end users have installed
the latest version of an app, mechanisms that can thoroughly
map all dependencies, and ensure their integrity, are necessary
to safeguard against supply chain attacks.

8 Conclusion

In this paper, we quantified the threat of expired domains
with a series of systematic analyses derived from dynami-
cally executing numerous APKs and apps. We extracted the
eTLD+1 domain dependencies of each APK by capturing its
DNS and HTTPS traffic generated from its interaction with
a UI-guided test input generator, and studied the stability of
such dependencies across time and version updates. During
app execution, we uncovered expired domains that were used
by hundreds of APKs and apps. By devising a methodical
approach to deduce domain expirations from passive DNS
data, we performed longitudinal analyses corroborating this
initial finding. Overall, we found that expired domains can
affect thousands of APKs, and hundreds of apps, at any given
point in time, that app updates do not always prevent this from
occurring, or fix this problem from a previous version, and
that older app versions are equally insecure. Additionally, we
reported evidence in the form of concrete case studies that
demonstrate the potential for abusing expired domains used
by mobile apps. We argue that new robust mechanisms that
can manage dependencies and provide integrity guarantees —
as opposed to merely forcing updates — are necessary.

Acknowledgments. We thank the anonymous reviewers and
shepherd for their help, as well as Farsight and WhoisXML
API for providing research access to their products. This work
was supported by the National Science Foundation (NSF) un-
der grants CNS-2211575, CNS-2126654, and CNS-1941617.

9 Ethics considerations

Our work conducted a large-scale analysis of the dependen-
cies of apps by downloading them and dynamically exploring
them with a UI-guided test input generator. As such, all in-
teractions with apps follow a generic behavior that does not
attempt targeted execution flows for specific apps, nor gen-
erate highly-realistic, human-like interactions with backend
services. We did not attempt to bypass any login or splash
screens of apps, and our infrastructure interacted with each
APK for a total of nine minutes. Thus, we are confident that
our dynamic analysis of apps did not negatively impact the
contacted backend services. We did not register any expired
domains and therefore never interacted with potential users of
the affected APKs (we manipulated our testing environment
for the investigations presented in Section 4.5).

Disclosure of our findings was complicated by the fact that
we finished our analyses more than six months after the initial
data collection, and that there is no immediately obvious pur-
pose in contacting app developers about outdated versions of
their software having been susceptible to the use of expired
domains in the past (particularly for the analyses with passive
DNS). We instead opted to contact the developers of the apps
affected by the 41 registrable domains we found at runtime.
Only one affected app developer replied: most of our disclo-
sures were redirected to automated support ticket customer
support systems, and these tickets were automatically closed
with no response. The one contact that responded asked for
more information to relay to the relevant app developers, but
never followed up.

10 Open science

The original research artifacts cannot be made available to the
public as they are governed by the terms of the first author’s
employment, but the authors have released alternative artifacts
that are not subject to the same restrictions at https://doi.
org/10.5281/zenodo.14737144.

Restrictions. The source code for the infrastructure that tests
apps and records their network traffic as described in Sec-
tion 3.3 and Figure 1 cannot be made available to the public,
as it was completed during the first author’s employment in
the research and development division of a cybersecurity com-
pany. In addition, the raw app dataset also cannot be released
as it was compiled through the use of a licensed VirusTotal
Enterprise API key, and the VirusTotal Enterprise Agreement
forbids the public sharing of samples obtained from their API.
The authors also used telemetry data from the company’s
commercial products to assist in determining the first seen
date for APKs. Thus, the open-sourcing of these two artifacts
(infrastructure and raw app dataset) is not permissible.

Artifacts. On the other hand, we are able to open-source
artifacts that are not governed by these policies. Five artifacts

that will be shared are detailed below. The first artifact will be
a tabular dataset that identifies individual APKs with metadata
(e.g., app name, version, and hash) and their extracted DNS
footprints. The second artifact will be a testing environment
used in Section 4.5 that replicates the original infrastructure
shown in Figure 1 that can be used to manually interact with
individual APKs and record the resultant network traffic on
a headful display. This comprises Docker containers for a
DNS server and a proxy to man-in-the-middle the network
traffic from the emulator, and scripts to configure the emulator
to trust the proxy. In addition, we will release the Jupyter
notebooks used to select the input sample of APKs as the
third artifact, and the analysis notebooks used to produce the
figures presented in the text based on the tabular, processed
dataset as the fourth artifact. We will also share the alternative
setup used to extract footprints from apps on Cuttlefish builds
used for Section 5.3, and the notebooks that compare them to
the originally extracted footprints from the Android Studio
Emulator as the fifth artifact.

References

[1] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein,
and Yves Le Traon. Androzoo: Collecting millions
of android apps for the research community. In 2016
IEEE/ACM 13th Working Conference on Mining Soft-
ware Repositories (MSR), pages 468–471. IEEE, 2016.

[2] Omar Alrawi, Chaoshun Zuo, Ruian Duan, Ranjita Pai
Kasturi, Zhiqiang Lin, and Brendan Saltaformaggio.
The betrayal at cloud city: An empirical analysis of
{Cloud-Based}mobile backends. In 28th USENIX Secu-
rity Symposium (USENIX Security 19), pages 551–566,
2019.

[3] Android. Android debug bridge (adb). https://deve
loper.android.com/tools/adb.

[4] Android. Contextcompat. https://developer.andr
oid.com/reference/androidx/core/content/Co
ntextCompat.

[5] Android. Cuttlefish virtual android devices | android
open source project. https://source.android.com
/docs/devices/cuttlefish.

[6] Android. In-app updates. https://developer.andr
oid.com/guide/playcore/in-app-updates.

[7] Android. Security with network protocols. https:
//developer.android.com/privacy-and-securi
ty/security-ssl.

[8] Android. Sslcontext. https://developer.android.
com/reference/javax/net/ssl/SSLContext.

https://doi.org/10.5281/zenodo.14737144
https://doi.org/10.5281/zenodo.14737144
https://developer.android.com/tools/adb
https://developer.android.com/tools/adb
https://developer.android.com/reference/androidx/core/content/ContextCompat
https://developer.android.com/reference/androidx/core/content/ContextCompat
https://developer.android.com/reference/androidx/core/content/ContextCompat
https://source.android.com/docs/devices/cuttlefish
https://source.android.com/docs/devices/cuttlefish
https://developer.android.com/guide/playcore/in-app-updates
https://developer.android.com/guide/playcore/in-app-updates
https://developer.android.com/privacy-and-security/security-ssl
https://developer.android.com/privacy-and-security/security-ssl
https://developer.android.com/privacy-and-security/security-ssl
https://developer.android.com/reference/javax/net/ssl/SSLContext
https://developer.android.com/reference/javax/net/ssl/SSLContext

[9] Android. Windowmanager.layoutparams. https://de
veloper.android.com/reference/android/view
/WindowManager.LayoutParams.

[10] APKMirror. Apkmirror - free apk downloads - free and
safe android apk downloads. https://www.apkmirro
r.com/.

[11] APKPure. Download apk on android with free online
apk downloader - apkpure. https://m.apkpure.co
m/.

[12] Apple. Apple developer program license agreement.
https://developer.apple.com/support/terms/
apple-developer-program-license-agreement/.

[13] Waqar Aziz. 7 developer best practices for app updates.
https://developer.amazon.com/apps-and-game
s/blogs/2023/02/app-updates-best-practices,
2023.

[14] Timothy Barron, Najmeh Miramirkhani, and Nick Niki-
forakis. Now you see it, now you {Don’t}: A large-scale
analysis of early domain deletions. In 22nd Interna-
tional Symposium on Research in Attacks, Intrusions
and Defenses (RAID 2019), pages 383–397, 2019.

[15] Leyla Bilge, Engin Kirda, Christopher Kruegel, and
Marco Balduzzi. Exposure: Finding malicious domains
using passive dns analysis. In Ndss, pages 1–17, 2011.

[16] Nataniel P Borges Jr, Jenny Hotzkow, and Andreas
Zeller. Droidmate-2: a platform for android test gener-
ation. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering,
pages 916–919, 2018.

[17] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher
Kruegel, and Giovanni Vigna. Cloud Strife: Mitigating
the Security Risks of Domain-Validated Certificates. In
Proceedings of the 25th Network and Distributed System
Security Symposium (NDSS).

[18] Laura Ceci. Frequency of application updates among
smartphone owners in the united states, as of 2016. ht
tps://www.statista.com/statistics/747569/u
nited-states-survey-smartphone-users-app-u
pdate-frequency/.

[19] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer,
and contributors. mitmproxy: A free and open source
interactive HTTPS proxy, 2010–.

[20] Data.ai. Number of mobile app downloads worldwide
from 2016 to 2022 (in billions). https://www.statis
ta.com/statistics/271644/worldwide-free-an
d-paid-mobile-app-store-downloads/, 2023.

[21] Farsight. Passive dns historical internet database: Far-
sight dnsdb. https://www.farsightsecurity.com
/solutions/dnsdb/.

[22] Google. Configure the app module. https://develo
per.android.com/build/configure-app-module.

[23] Google. Device and network abuse - play console help.
https://support.google.com/googleplay/andr
oid-developer/answer/9888379?sjid=93396511
12128996414-NA.

[24] Google. Last modified timestamp on all files in apk
default to ’fri, nov 30 1979 00:00:00’ [37116029] - issue
tracker. https://issuetracker.google.com/issu
es/37116029, 2016.

[25] Google. Virustotal enterprise. https://assets.vir
ustotal.com/vt-360-outcomes.pdf, 2021.

[26] Daniel Gruss, Michael Schwarz, Matthias Wübbeling,
Simon Guggi, Timo Malderle, Stefan More, and Moritz
Lipp. Use-after-freemail: Generalizing the use-after-free
problem and applying it to email services. In Proceed-
ings of the 2018 on Asia Conference on Computer and
Communications Security, pages 297–311, 2018.

[27] Heroku. Review apps - selecting the url pattern. https:
//devcenter.heroku.com/articles/github-int
egration-review-apps.

[28] ICANN. Centralized zone data service. https://czds
.icann.org/home.

[29] ICANN. Epp status codes | what do they mean, and
why should i know? https://www.icann.org/reso
urces/pages/epp-status-codes-2014-06-16-en,
2014.

[30] ICANN. Expired registration recovery policy. https:
//www.icann.org/en/resources/registrars/co
nsensus-policies/errp, 2024.

[31] ISC. Bind 9 - isc. https://www.isc.org/bind/.

[32] Konrad Jamrozik and Andreas Zeller. Droidmate: a
robust and extensible test generator for android. In Pro-
ceedings of the International Conference on Mobile Soft-
ware Engineering and Systems, pages 293–294, 2016.

[33] Issa Khalil, Ting Yu, and Bei Guan. Discovering mali-
cious domains through passive dns data graph analysis.
In Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, pages 663–
674, 2016.

[34] InConcept Labs. How to force update a mobile app
when a new version is available. https://www.link
edin.com/pulse/how-force-update-mobile-app
-when-new-version-available-/.

https://developer.android.com/reference/android/view/WindowManager.LayoutParams
https://developer.android.com/reference/android/view/WindowManager.LayoutParams
https://developer.android.com/reference/android/view/WindowManager.LayoutParams
https://www.apkmirror.com/
https://www.apkmirror.com/
https://m.apkpure.com/
https://m.apkpure.com/
https://developer.apple.com/support/terms/apple-developer-program-license-agreement/
https://developer.apple.com/support/terms/apple-developer-program-license-agreement/
https://developer.amazon.com/apps-and-games/blogs/2023/02/app-updates-best-practices
https://developer.amazon.com/apps-and-games/blogs/2023/02/app-updates-best-practices
https://www.statista.com/statistics/747569/united-states-survey-smartphone-users-app-update-frequency/
https://www.statista.com/statistics/747569/united-states-survey-smartphone-users-app-update-frequency/
https://www.statista.com/statistics/747569/united-states-survey-smartphone-users-app-update-frequency/
https://www.statista.com/statistics/747569/united-states-survey-smartphone-users-app-update-frequency/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.farsightsecurity.com/solutions/dnsdb/
https://www.farsightsecurity.com/solutions/dnsdb/
https://developer.android.com/build/configure-app-module
https://developer.android.com/build/configure-app-module
https://support.google.com/googleplay/android-developer/answer/9888379?sjid=9339651112128996414-NA
https://support.google.com/googleplay/android-developer/answer/9888379?sjid=9339651112128996414-NA
https://support.google.com/googleplay/android-developer/answer/9888379?sjid=9339651112128996414-NA
https://issuetracker.google.com/issues/37116029
https://issuetracker.google.com/issues/37116029
https://assets.virustotal.com/vt-360-outcomes.pdf
https://assets.virustotal.com/vt-360-outcomes.pdf
https://devcenter.heroku.com/articles/github-integration-review-apps
https://devcenter.heroku.com/articles/github-integration-review-apps
https://devcenter.heroku.com/articles/github-integration-review-apps
https://czds.icann.org/home
https://czds.icann.org/home
https://www.icann.org/resources/pages/epp-status-codes-2014-06-16-en
https://www.icann.org/resources/pages/epp-status-codes-2014-06-16-en
https://www.icann.org/en/resources/registrars/consensus-policies/errp
https://www.icann.org/en/resources/registrars/consensus-policies/errp
https://www.icann.org/en/resources/registrars/consensus-policies/errp
https://www.isc.org/bind/
https://www.linkedin.com/pulse/how-force-update-mobile-app-when-new-version-available-/
https://www.linkedin.com/pulse/how-force-update-mobile-app-when-new-version-available-/
https://www.linkedin.com/pulse/how-force-update-mobile-app-when-new-version-available-/

[35] Chaz Lever, Robert Walls, Yacin Nadji, David Dagon,
Patrick McDaniel, and Manos Antonakakis. Domain-
z: 28 registrations later measuring the exploitation of
residual trust in domains. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 691–706. IEEE, 2016.

[36] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen.
Droidbot: a lightweight ui-guided test input generator
for android. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-
C), pages 23–26. IEEE, 2017.

[37] Fuqi Lin, Xuan Lu, Wei Ai, Huoran Li, Yun Ma, Yulian
Yang, Hongfei Deng, Qingxiang Wang, Qiaozhu Mei,
and Xuanzhe Liu. Adoption of recurrent innovations:
A large-scale case study on mobile app updates. ACM
Transactions on the Web, 18(1):1–26, 2023.

[38] Daiping Liu, Shuai Hao, and Haining Wang. All your
dns records point to us: Understanding the security
threats of dangling dns records. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1414–1425, 2016.

[39] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and
Heng Yin. Attacks on webview in the android system.
In Proceedings of the 27th Annual Computer Security
Applications Conference, pages 343–352, 2011.

[40] Detlef M. Mtalk.google.com managing my play ser-
vices, what can i do to end this? https://support.go
ogle.com/pixelphone/thread/213101183/mtalk
-google-com-managing-my-play-services-what
-can-i-do-to-end-this?hl=en.

[41] Arunesh Mathur and Marshini Chetty. Impact of user
characteristics on attitudes towards automatic mobile
application updates. In Thirteenth Symposium on Usable
Privacy and Security (SOUPS 2017), pages 175–193,
2017.

[42] Lauren McCormack. Mobile app download. https:
//buildfire.com/app-statistics/, 2023.

[43] MDN. etld. https://developer.mozilla.org/en
-US/docs/Glossary/eTLD.

[44] MDN. Http public key pinning (hpkp). https://deve
loper.mozilla.org/en-US/docs/Web/HTTP/Publ
ic_Key_Pinning.

[45] Microsoft. Codepush. https://github.com/micro
soft/code-push.

[46] Andreas Möller, Florian Michahelles, Stefan Diewald,
Luis Roalter, and Matthias Kranz. Update behavior in
app markets and security implications: A case study
in google play. In Research in the Large, LARGE 3.0:
21/09/2012-21/09/2012, pages 3–6, 2012.

[47] Mozilla. Public suffix list. https://publicsuffix.o
rg/, 2005.

[48] Patrick Mutchler, Adam Doupé, John Mitchell, Chris
Kruegel, and Giovanni Vigna. A large-scale study of
mobile web app security. In Proceedings of the Mobile
Security Technologies Workshop (MoST), volume 50,
2015.

[49] Maleknaz Nayebi, Bram Adams, and Guenther Ruhe.
Release practices for mobile apps – what do users and
developers think? In 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengi-
neering (SANER), volume 1, pages 552–562, 2016.

[50] Nick Nikiforakis, Luca Invernizzi, Alexandros Kaprav-
elos, Steven Van Acker, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. You
are what you include: large-scale evaluation of remote
javascript inclusions. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 736–747, 2012.

[51] Gergely Orosz. Force upgrading for mobile apps. In
Building Mobile Apps at Scale: 39 Engineering Chal-
lenges. Primedia E-launch LLC, April 2021.

[52] p1r473. mtalk.google.com required by many android
apps - issue 2 - th3m3/blocklists. https://github.c
om/Th3M3/blocklists/issues/2.

[53] Elkana Pariwono, Daiki Chiba, Mitsuaki Akiyama, and
Tatsuya Mori. Don’t throw me away: Threats caused
by the abandoned internet resources used by android
apps. In Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, pages 147–
158, 2018.

[54] pcipolloni. Frida codeshare: Universal android ssl pin-
ning bypass with frida. https://codeshare.frida.
re/@pcipolloni/universal-android-ssl-pinn
ing-bypass-with-frida/.

[55] Roberto Perdisci, Thomas Papastergiou, Omar Alrawi,
and Manos Antonakakis. Iotfinder: Efficient large-scale
identification of iot devices via passive dns traffic anal-
ysis. In 2020 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 474–489. IEEE, 2020.

[56] Prashanth Rajivan, Efrat Aharonov-Majar, and Cleotilde
Gonzalez. Update now or later? effects of experience,
cost, and risk preference on update decisions. Journal
of Cybersecurity, 6(1):tyaa002, 2020.

[57] Ole André V. Ravnås. Frida - a world-class dynamic
instrumentation toolkit. https://frida.re/.

https://support.google.com/pixelphone/thread/213101183/mtalk-google-com-managing-my-play-services-what-can-i-do-to-end-this?hl=en
https://support.google.com/pixelphone/thread/213101183/mtalk-google-com-managing-my-play-services-what-can-i-do-to-end-this?hl=en
https://support.google.com/pixelphone/thread/213101183/mtalk-google-com-managing-my-play-services-what-can-i-do-to-end-this?hl=en
https://support.google.com/pixelphone/thread/213101183/mtalk-google-com-managing-my-play-services-what-can-i-do-to-end-this?hl=en
https://buildfire.com/app-statistics/
https://buildfire.com/app-statistics/
https://developer.mozilla.org/en-US/docs/Glossary/eTLD
https://developer.mozilla.org/en-US/docs/Glossary/eTLD
https://developer.mozilla.org/en-US/docs/Web/HTTP/Public_Key_Pinning
https://developer.mozilla.org/en-US/docs/Web/HTTP/Public_Key_Pinning
https://developer.mozilla.org/en-US/docs/Web/HTTP/Public_Key_Pinning
https://github.com/microsoft/code-push
https://github.com/microsoft/code-push
https://publicsuffix.org/
https://publicsuffix.org/
https://github.com/Th3M3/blocklists/issues/2
https://github.com/Th3M3/blocklists/issues/2
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://frida.re/

[58] Sebastian Roth, Timothy Barron, Stefano Calzavara,
Nick Nikiforakis, and Ben Stock. Complex security
policy? a longitudinal analysis of deployed content se-
curity policies. In Proceedings of the 27th Network and
Distributed System Security Symposium (NDSS), 2020.

[59] Iskander Sanchez-Rola, Davide Balzarotti, Christopher
Kruegel, Giovanni Vigna, and Igor Santos. Dirty clicks:
A study of the usability and security implications of
click-related behaviors on the web. In Proceedings of
The Web Conference 2020, pages 395–406, 2020.

[60] Joe St Sauver. Enhancing dnsdb to better handle dns
wildcard names. https://www.domaintools.com/
resources/blog/enhancing-dnsdb-to-better-h
andle-dns-wildcard-names/.

[61] Allison Schiff. Location intel provider cuebiq is shutting
down its sdk in the name of privacy. https://www.ad
exchanger.com/mobile/location-intel-provid
er-cuebiq-is-shutting-down-its-sdk-in-the-
name-of-privacy/.

[62] skylot. skylot/jadx: Dex to java decompiler. https:
//github.com/skylot/jadx.

[63] Johnny So, Najmeh Miramirkhani, Michael Ferdman,
and Nick Nikiforakis. Domains do change their spots:
Quantifying potential abuse of residual trust. In 2022
IEEE Symposium on Security and Privacy (SP), pages
2130–2144. IEEE, 2022.

[64] statcounter. Desktop vs mobile vs tablet market share
worldwide. https://gs.statcounter.com/platf
orm-market-share/desktop-mobile-tablet/wor
ldwide/2023, 2023.

[65] Check Point Research Team. Largest mobile chipset
manufacturers used vulnerable audio decoder, 2/3 of
android users’ privacy around the world were at risk.
https://blog.checkpoint.com/security/large
st-mobile-chipset-manufacturers-used-vulne
rable-audio-decoder-2-3-of-android-users-p
rivacy-around-the-world-were-at-risk/.

[66] VirusTotal. Virustotal api v3 overview. https://deve
lopers.virustotal.com/reference/overview.

[67] Florian Weimer. Passive dns replication. In FIRST
conference on computer security incident, volume 98,
pages 1–14, 2005.

[68] Jimmy Westenberg. We asked, you told us: 65 percent
of you throw caution to the wind and auto-update apps.
https://www.androidauthority.com/auto-upda
te-apps-google-play-store-poll-results-107
7403/, 2020.

[69] WhatWG. Url standard. https://url.spec.whatwg.
org.

[70] WHOISDataCenter. Whoisdatacenter.com. https:
//whoisdatacenter.com/.

[71] WhoisXMLAPI. Whois history. https://whois-hi
story.whoisxmlapi.com/.

[72] Michelle Y Wong and David Lie. Intellidroid: a targeted
input generator for the dynamic analysis of android mal-
ware. In NDSS, volume 16, pages 21–24, 2016.

[73] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xi-
aohan Zhang, Yanjun Chen, Yuan Zhang, Guangliang
Yang, and Min Yang. Identity confusion in {WebView-
based} mobile app-in-app ecosystems. In 31st USENIX
Security Symposium (USENIX Security 22), pages 1597–
1613, 2022.

[74] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu,
Xiaorui Gong, Xinhui Han, and Wei Zou. Smartdroid:
an automatic system for revealing ui-based trigger con-
ditions in android applications. In Proceedings of the
second ACM workshop on Security and privacy in smart-
phones and mobile devices, pages 93–104, 2012.

[75] Chaoshun Zuo and Zhiqiang Lin. Smartgen: Expos-
ing server urls of mobile apps with selective symbolic
execution. In Proceedings of the 26th International
Conference on World Wide Web, pages 867–876, 2017.

Appendices
This section provides several detailed excerpts for interested
readers. Appendix A details DNS record configurations; Ap-
pendix B describes over-the-air updates; Appendix C explains
the empirical verifications of the approach described in Sec-
tion 3.4; Appendix D discusses the even distribution of the
final app sample; and Appendix E outlines the shortcomings
of historical WHOIS databases.

A DNS Configurations

When a domain is purchased, a registrar typically provisions
default DNS records. During the registration period, owners
are free to reconfigure the DNS records as they please. The
NS record type is one of the records that are automatically
provisioned, and it specifies the authoritative name servers for
the domain, which is furnished to the gTLD servers as DNS
glue records to prevent circular dependencies if the authori-
tative name servers are subdomains of the root domain. The
managing authorities publish these glue records in their daily
zone files, essentially serving as the ground truth of whether a

https://www.domaintools.com/resources/blog/enhancing-dnsdb-to-better-handle-dns-wildcard-names/
https://www.domaintools.com/resources/blog/enhancing-dnsdb-to-better-handle-dns-wildcard-names/
https://www.domaintools.com/resources/blog/enhancing-dnsdb-to-better-handle-dns-wildcard-names/
https://www.adexchanger.com/mobile/location-intel-provider-cuebiq-is-shutting-down-its-sdk-in-the-name-of-privacy/
https://www.adexchanger.com/mobile/location-intel-provider-cuebiq-is-shutting-down-its-sdk-in-the-name-of-privacy/
https://www.adexchanger.com/mobile/location-intel-provider-cuebiq-is-shutting-down-its-sdk-in-the-name-of-privacy/
https://www.adexchanger.com/mobile/location-intel-provider-cuebiq-is-shutting-down-its-sdk-in-the-name-of-privacy/
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/2023
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/2023
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/2023
https://blog.checkpoint.com/security/largest-mobile-chipset-manufacturers-used-vulnerable-audio-decoder-2-3-of-android-users-privacy-around-the-world-were-at-risk/
https://blog.checkpoint.com/security/largest-mobile-chipset-manufacturers-used-vulnerable-audio-decoder-2-3-of-android-users-privacy-around-the-world-were-at-risk/
https://blog.checkpoint.com/security/largest-mobile-chipset-manufacturers-used-vulnerable-audio-decoder-2-3-of-android-users-privacy-around-the-world-were-at-risk/
https://blog.checkpoint.com/security/largest-mobile-chipset-manufacturers-used-vulnerable-audio-decoder-2-3-of-android-users-privacy-around-the-world-were-at-risk/
https://developers.virustotal.com/reference/overview
https://developers.virustotal.com/reference/overview
https://www.androidauthority.com/auto-update-apps-google-play-store-poll-results-1077403/
https://www.androidauthority.com/auto-update-apps-google-play-store-poll-results-1077403/
https://www.androidauthority.com/auto-update-apps-google-play-store-poll-results-1077403/
https://url.spec.whatwg.org
https://url.spec.whatwg.org
https://whoisdatacenter.com/
https://whoisdatacenter.com/
https://whois-history.whoisxmlapi.com/
https://whois-history.whoisxmlapi.com/

particular domain had their DNS settings configured for that
day. Participating gTLDs publish their current zone files every
day on the Centralized Zone Data Service [28].

After a domain expires, control is passed back to the reg-
istrar. For gTLDs under the ERRP discussed in Section 2,
it is possible for a domain to have DNS records configured
while it is expired: registrars may “interrupt” the existing
DNS resolution of a domain after it has passed the expira-
tion date. This interruption can take various forms, including
modifying the DNS resolution path to point to a web page
with domain renewal instructions. However, upon deletion
by the registrar, the domain enters the 30-day Redemption
Grace Period before being released to the public, and there
must not exist any DNS records during this time [30]. Thus,
we can make the following assertion about any domain at
time t: if a domain was configured with a DNS record at time
t, it was not publicly registrable at that time, either because
it was registered and in good standing, or it was expired but
not yet deleted by the registrar. Further, if a domain was not
configured, this can be because: the domain was registered
and in good standing, but there was no active DNS record at
time t, or the domain was not registered at time t, and thus
could not have had an active DNS record at time t.

B Mobile Apps: Over-the-Air Updates

Android apps are written in a programming language, and
then bundled into APK files for marketplaces to distribute,
and for devices to install. For every installed app, there exists
a static set of source code files and assets on the local device.
Depending on the app structure, it may be possible for apps
to perform certain updates without interacting with the app
marketplace. The CodePush service [45] for React Native
apps provides this feature as over-the-air updates: the ability
to update certain assets (e.g., bundled JavaScript) over the
air without interacting with the app marketplace. However,
this feature is restricted to assets and not core source code
files: official app marketplaces such as the iOS App Store and
Google Play explicitly prohibit apps from downloading or
installing executable code to maintain the integrity of apps
after they have been reviewed [12, 23]. At its core, this ability
is implemented in the same manner as the ad-hoc version-
control logic as described earlier: by checking local assets
against the latest assets stored on a server. In the context of
this work, we consider the version-control server as another
dependency of the app (i.e., part of its DNS footprint).

C Additional Discussion for Identifying Expi-
rations from Passive DNS

To support our methodology of identifying expirations in
passive DNS data, we conduct several small-scale, empirical
analyses on a set of 214 domains for which we previously

Algorithm 1 Inferring domain expirations (see Section 3.4)
1: RRTYPES← [A,AAAA,CNAME,NS,SOA,MX,TXT]
2: MinGapDays← 35
3: procedure UNIONINTERVALS(itvls)

. Union of all overlapping intervals
4: sorted← sort(itvls) . Sorted by start time
5: stack← []
6: if len(itvls) ≥ 1 then
7: stack.append(itvls[0])
8: for itvl ∈ itvls[1 :] do
9: if Overlaps(stack[−1], itvl) then

10: ProcessOverlap(stack, itvl)
11: else
12: stack.append(itvl)
13: end if
14: end for
15: end if
16: stack← sort(stack)
17: return stack
18: end procedure
19: procedure PROCESSPDNS(d)

. Passive DNS configuration intervals
20: itvls← {}
21: raw← QueryPDNS(d)
22: for r ∈ raw do
23: if r.rrtype /∈ RRTYPES then continue
24: end if
25: itvl← [r.day_first, r.day_last]
26: itvls[r.rrtype].append(itvl)
27: end for
28: f inal← []
29: for rrtype ∈ itvls do
30: f inal.extend(UnionIntervals(itvls[rrtype]))
31: end for
32: return UnionIntervals(f inal)
33: end procedure
34: procedure INFEREXPIRATIONS(d)
35: itvls← ProcessPDNS(d)
36: gaps← FilterForGaps(itvls, MinGapDays)
37: gaps← AdjustGapsMinOneYearApart(gaps)
38: return gaps
39: end procedure

registered, and thus have access to at least one registration
period and two expiration periods. The goal is to evaluate the
accuracy and reliability of the passive DNS data, and whether
Algorithm 1 incurs false positives.

Data Reliability. To verify the reliability of the data, we ver-
ify that the beginning of passive DNS intervals correspond to
registration times — or when DNS records are configured —
and that the end correspond to the lack of DNS records. Re-
garding the former, all 214 domains had passive DNS records
that began within one day of registration. For the latter, we
cross-referenced identified gap periods from passive DNS
against the DNS zone files published by their registrars. We
were able to download the daily zone files from the TLDs
of 160 domains starting from a few days before their expira-
tion dates. We confirmed that all 160 domains disappeared
from their zone files during the identified gap periods in their
passive DNS data. In short, this empirically confirms that iden-
tified gaps in passive DNS data are caused by a lack of DNS
configuration in the specified time windows, and not because
of poor data collection infrastructure from our provider.

False Positives. False positives would occur if our method-
ology detected domain expirations that never happened. We

GA
M

E_
CA

SU
AL

GA
M

E_
PU

ZZ
LE

GA
M

E_
AC

TI
ON

GA
M

E_
AR

CA
DE

PH
OT

OG
RA

PH
Y

SH
OP

PI
NG

PR
OD

UC
TI

VI
TY

GA
M

E_
RA

CI
NG

LI
FE

ST
YL

E

GA
M

E_
ST

RA
TE

GY

GA
M

E_
W

OR
D

NE
W

S_
AN

D_
M

AG
AZ

IN
ES

FO
OD

_A
ND

_D
RI

NK

M
US

IC
_A

ND
_A

UD
IO

HO
US

E_
AN

D_
HO

M
E

ED
UC

AT
IO

N

FI
NA

NC
E

TO
OL

S

TR
AV

EL
_A

ND
_L

OC
AL

GA
M

E_
CA

RD

GA
M

E_
ED

UC
AT

IO
NA

L

GA
M

E_
SP

OR
TS

GA
M

E_
AD

VE
NT

UR
E

PE
RS

ON
AL

IZ
AT

IO
N

GA
M

E_
RO

LE
_P

LA
YI

NG

BU
SI

NE
SS

HE
AL

TH
_A

ND
_F

IT
NE

SS

GA
M

E_
SI

M
UL

AT
IO

N

AU
TO

_A
ND

_V
EH

IC
LE

S

GA
M

E_
M

US
IC

AR
T_

AN
D_

DE
SI

GN

BO
OK

S_
AN

D_
RE

FE
RE

NC
E

CO
M

M
UN

IC
AT

IO
N

W
EA

TH
ER

M
ED

IC
AL

BE
AU

TY

EN
TE

RT
AI

NM
EN

T

PA
RE

NT
IN

G

M
AP

S_
AN

D_
NA

VI
GA

TI
ON

GA
M

E_
TR

IV
IA

DA
TI

NG

GA
M

E_
BO

AR
D

VI
DE

O_
PL

AY
ER

S

SP
OR

TS

LI
BR

AR
IE

S_
AN

D_
DE

M
O

GA
M

E_
CA

SI
NO

EV
EN

TS

CO
M

IC
S

SO
CI

AL

Google Play Store Category

0

100

200

300

400

Nu
m

be
r o

f A
pp

s

apps included # apps excluded

Figure 7: Number of apps found, and successfully executed, in each
of the 49 categories on the Google Play Store.

found that all detected expirations from the passive DNS data
for the 214 domains align with their actual expirations.

False Negatives. False negatives would occur if Algorithm 1
fails to detect actual expirations. After computing the gaps
in the DNS configuration intervals for the 214 domains, we
observe that there is a gap within the 43 days following expira-
tion for 89.7% of the domains. The exact length of this delay
depends on the policies for each registrar and its exact value
is not important, but it does show that identified expirations
via gap periods in passive DNS data occur soon after the ac-
tual expiration date. The remaining 22 domains manifested as
false negatives with unexpected, large values (over 60 days).
Upon investigation of these domains, we found default NS
records configured by the registrar (Dynadot) with years-long
durations of time between their last seen and first seen times-
tamps, well beyond the domain registration and expiration
window, resulting in the inability of our approach to detect a
gap at the time of expiration. The time windows provided by
these NS records subsumed the shorter and more fine-grained
time windows that aligned with the registration period, result-
ing in long registration intervals that did not correspond to
our actual registration and expiration dates for these domains.
In the context of this study, we argue that false negatives do
not take away from our results — our findings present a lower
bound, and worst-case, analysis on the exploitability of the
DNS footprints of apps.

D Data Sample Representation

Although the fraction of initial apps and of initial APKs may
seem low, the apps (and corresponding versions) which are
included are nearly-uniformly distributed across category, and
across rankings within each category, so the dataset remains
a representative sample for the purposes of our analyses. See
Figure 7 for a visual representation of the number of apps
included, and excluded, in the final dataset for every category
of the Google Play Store. Our approach successfully extracted
the footprints of more than 300 apps for each category —
except for the Social category which had less than 300 to
begin with, but has a similar inclusion proportion — so our

1-
25

26
-5

0

51
-7

5

76
-1

00

10
1-

12
5

12
6-

15
0

15
1-

17
5

17
6-

20
0

20
1-

22
5

22
6-

25
0

25
1-

27
5

27
6-

30
0

30
1-

32
5

32
6-

35
0

35
1-

37
5

37
6-

40
0

40
1-

42
5

42
6-

45
0

45
1-

47
5

47
6-

50
0

Rank Bin

0

200

400

600

800

1000

1200

Nu
m

be
r o

f A
pp

s

count # apps excluded

Figure 8: Number of apps found, and successfully executed, in each
of the 49 categories on the Google Play Store.

sample is still representative of each category. For a similar
distribution of apps across ranking bins, see Figure 8, which
indicates that our dataset comprises a representative sample
across ranks.

Regarding distribution of versions for apps, there is a signif-
icant portion of apps with at least 10 different versions in the
original set of apps downloadable from VirusTotal. Although
the final dataset does not include all 10 latest versions of such
apps, it retains as many versions of them as possible, resulting
in increases in the number of apps with other numbers of ver-
sions. In the final dataset, the number of apps with x versions
is over 1,000 for every x in [1,10]. Furthermore, we found no
bias towards more popular apps having a higher number of
versions.

E Historical WHOIS

Historical WHOIS databases periodically query WHOIS
records of domains, which contain registration and expira-
tion dates. Regardless if a historical WHOIS service uses a
one-time fee pricing model to provide a download of a snap-
shot of their database, or a pay-as-you-go model with API
access, it would cost thousands of dollars to retrieve data for
the number of expired domains we discovered [70, 71]. Fur-
thermore, similar concerns of reliability exist: failed queries
induce false positives when identifying domain expirations.

We obtained limited research access to WhoisXML
API [71] and evaluated 25 of the domains from Appendix C.
We found that our automated analyses were not sufficient;
manual review was required because registrars preemptively
renew expiring domains with their registries, and accordingly
extend the expiration date of the WHOIS record. If the domain
owner does not renew their domain, the domain is deleted
and the registrar resets the WHOIS expiration date. This be-
havior results in temporary records with extended expiration
dates persisting in historical WHOIS databases, and obstructs
our methodology similarly to the long NS records. Thus, in
addition to its costly nature, WHOIS analysis is not scalable
without automatically excluding these WHOIS records, which
vary by registrar.

Lost in the Mists of Time: Expirations in DNS Footprints of Mobile Apps

Johnny So
Stony Brook University

Iskander Sanchez-Rola
Norton Research Group

Nick Nikiforakis
Stony Brook University

A Artifact Appendix

This artifact appendix is meant to be a self-contained docu-
ment which describes a roadmap for the evaluation of your
artifact. It should include a clear description of the hardware,
software, and configuration requirements. In case your arti-
fact aims to receive the functional or results reproduced badge,
it should also include the major claims made by your paper
and instructions on how to reproduce each claim through
your artifact. Linking the claims of your paper to the artifact
is a necessary step that ultimately allows artifact evaluators
to reproduce your results.

Please fill all the mandatory sections, keeping their titles
and organization but removing the current illustrative content,
and remove the optional sections where those do not apply to
your artifact.

A.1 Abstract

In this work, we present the first large-scale analysis of mobile
app dependencies through a dual perspective accounting for
time and version updates, with a focus on expired domains.
First, we detail a methodology to build a representative cor-
pus comprising 77,206 versions of 15,124 unique Android
apps. Next, we extract the unique eTLD+1 domain dependen-
cies — the “DNS footprint” — of each APK by monitoring
the network traffic produced with a dynamic, UI-guided test
input generator and report on the footprint of a typical app.
Using these footprints, combined with a methodology that de-
duces potential periods of vulnerability for individual APKs
by leveraging passive DNS, we characterize how apps may
have been affected by expired domains throughout time. Our
findings indicate that the threat of expired domains in app
dependencies is nontrivial at scale, affecting hundreds of apps
and thousands of APKs, occasionally affecting apps that rank
within the top ten of their categories, apps that have hundreds
of millions of downloads, or apps that were the latest version.
Furthermore, we uncovered 40 immediately registrable do-
mains that were found in app footprints during our analyses,
and provide evidence in the form of case studies as to their
potential for abuse. We also find that even the most security-
conscious users cannot protect themselves against the risk of
their using an app that has an expired dependency, even if
they can update their apps instantaneously.

As part of the artifact evaluation, we release datasets and

analysis notebooks that enable reviewers to reproduce the
figures and tables that are presented in the text. Additionally,
we release a version of the main app analysis infrastructure
to enable future work.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There are no security, privacy, and ethical concerns associated
with running these artifacts. In terms of running processes,
running the Jupyter notebooks requires a running Jupyter
server, and running the Cuttlefish infrastructure spawns var-
ious disposable components. However, we do recommend
using a local firewall (e.g., ufw) if running the Cuttlefish in-
frastructure, as it will spawn Cuttlefish virtual devices that
can be manipulated over the network via adb. The only host-
level settings that are modified come from the Cuttlefish in-
frastructure, which provides scripts to manipulate iptables
and ufw rules (iptables.sh and ufw_modify_cvd.sh in
the /cuttlefish/scripts directory, respectively). These
scripts enable all traffic from the Cuttlefish virtual devices to
correctly pass through ufw (if it is enabled), and route DNS
traffic from the Cuttlefish devices to a specified DNS server.

A.2.2 How to access

We provide access to our artifact on Zenodo at the following
link: https://doi.org/10.5281/zenodo.14737144. The artifact
will be updated with new versions at this URL according to
the discussion of the artifact evaluation period.

A.2.3 Hardware dependencies

The only hardware requirements are imposed by the Android
Cuttlefish infrastructure components, which require CPU sup-
port for kvm.

For convenience, we provide reviewers with ac-
cess to a VM which we have pre-configured with
all necessary dependencies, and installed the artifacts at
/home/ubuntu/artifacts. In addition, this VM comes with
the sample of APKs used for the Cuttlefish experiments
(which unfortunately cannot be publicly shared in the artifact
itself). We recommend using the provided VM as a reference
as there are various dependencies required by the Cuttlefish
infrastructure components.

https://doi.org/10.5281/zenodo.14737144

A.2.4 Software dependencies

These artifacts were exclusively developed and tested on an
Ubuntu 20.04 machine. The Jupyter notebooks should work
on any platforms that support Python, and the Cuttlefish-based
infrastructure should work on most Linux distributions. If you
would like to run the analysis notebooks, the dependencies
are fairly simple. However, if you would like to set up your
own testing environment with the Cuttlefish virtual devices,
there are additional dependencies that need to be installed, and
certain components may not be cross-platform compatible
(e.g., the script that uses iptables to route DNS traffic from
Cuttlefish devices).

To run the Jupyter Notebooks, the only requirement
is a Python environment with all the dependencies in
/requirements.txt.

To run the Cuttlefish app analysis infrastructure, there are
additional requirements:

1. Docker Engine for the DNS servers and HTTPS proxies

2. Android Cuttlefish - which can be in-
stalled using cuttlefish_setup.sh and
cuttlefish_download_images.sh in the
/cuttlefish/scripts directory

• NOTE: kvm needs to be supported by your CPU

3. The fork of DroidBot in droidbot.tar.gz installed in
the Python environment

• After inflating the droidbot folder, it
can be installed via pip install -e
/path/to/droidbot

4. Frida server - which can be installed
by download_frida_server.sh in the
/cuttlefish/scripts directory

5. iptables to route DNS traffic from the Cuttlefish de-
vices

6. [recommended] ufw as Cuttlefish devices expose addi-
tional ports

7. [recommended] a desktop environment / VNC server
(e.g., turbovnc) to interact with the Cuttlefish devices

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

As Zenodo records only support flat files, the artifacts have
been compressed.

1. Download the data artifacts from Zenodo at
https://doi.org/10.5281/zenodo.14737144 and en-
sure they are all in the same directory.

2. chmod +x inflate.sh && chmod +x deflate.sh

3. /inflate.sh to inflate the artifacts

Depending on whether you would like to only run the
analyses with Python or run the Cuttlefish infrastructure, you
will need to install different dependencies. The steps below
outline the installation steps for both cases.

Python Environment [Jupyter and Cuttlefish]. The offi-
cial downloads can be found on the Python site, but Python is
likely to have been pre-installed on your machine. We recom-
mend creating a separate virtual environment for the required
Python dependencies for this artifact (see this for a primer on
virtual environments).

1. After setting up your Python virtual environment, please
install the packages in /requirements.txt with the
corresponding commands for your environment manager
(e.g., pip install requirements.txt).

The below dependencies are only required to test the Cut-
tlefish infrastructure.

Python Environment [Cuttlefish, required]. After in-
stalling your Python environment as described above, you
will also need to install the provided fork of DroidBot to use
in the Cuttlefish infrastructure. To do so, please inflate the
artifacts, and run:

pip install -e /path/to/droidbot-fork

inside your Python virtual environment.

Docker [Cuttlefish, required]. The official setup instruc-
tions can be found at the Docker docs site.

1. Docker Engine can be installed on Linux with
docker_setup.sh in the /cuttlefish/scripts di-
rectory.

2. Log out and log back in so that your group membership
is re-evaluated to run docker commands without sudo.

Android Cuttlefish [Cuttlefish, required]. The official
setup instructions can be found at the Android Open Source
site.

1. Cuttlefish packages can be set up on Linux with
cuttlefish_setup.sh in the scripts directory.

2. Download the following Cuttlefish Android 11 artifacts
from aosp-android11-gsi@11718355 to some directory
(e.g., $HOME/cf-images/11718355 which is created by
the prior script):

https://docs.docker.com/engine/install/
https://source.android.com/docs/devices/cuttlefish/get-started
https://github.com/frida/frida
https://doi.org/10.5281/zenodo.14737144
https://www.python.org/downloads/source/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://docs.docker.com/engine/install/ubuntu/
https://source.android.com/docs/devices/cuttlefish/get-started
https://source.android.com/docs/devices/cuttlefish/get-started
https://ci.android.com/builds/submitted/11718355/aosp_cf_x86_64_phone-userdebug/latest

(a) aosp_cf_x86_64_phone-img-11718355.zip
for the Android image

(b) cvd-host_package.tar.gz for the host cuttle-
fish utilities

3. Extract the downloaded artifacts by running:

tar -xvf cvd-host_package.tar.gz
unzip aosp_cf_x86_64_phone-img-11718355.zip

4. Then, add the absolute path of the
cf-images/android11/bin to your PATH (it is
recommended to add to do so in a persistent manner)

Desktop Environment/VNC [Cuttlefish, recommended].
If you are working in a remote/headless environment, it is rec-
ommended to install a desktop environment and a VNC server
so that you can visually monitor and control the Cuttlefish
virtual devices with a browser and WebRTC.

It should be possible to connect to a remote WebRTC pro-
cess from your local computer without installing a desktop
environment on the machine running the Cuttlefish infras-
tructure (e.g., with SSH port tunneling), but we encountered
problems with this and found that installing the desktop envi-
ronment was simpler.

If you need help, here is an example guide on how to install
TightVNC with Xfce4 on Ubuntu.
Configuration. After installing the required dependencies,
make sure to update the configuration for the desired com-
ponents. For the Jupyter notebooks, the main configuration
file is /analysis/.parameters.py, but this should not re-
quire any changes as long as the directory structure was not
modified after inflating the artifacts.

For the Cuttlefish infrastructure, the main configuration file
is /cuttlefish/.env. In particular, make sure to change the
following variables:

1. DIR_BASE to the absolute file path to the inflated
/data/cuttlefish directory

2. DIR_ADB_FILES to the absolute file path to the inflated
/cuttlefish/adb_files directory

3. MITMPROXY_CACERT_FILENAME to be the name of
the created mitmproxy CA certificate produced by
the generate_mitmproxy_cert.sh script. See Sec-
tion A.3.2 for more details on what to put for this setting.

4. NUM_APPS_PER_SAMPLE to the number of apps per sam-
ple group desired

5. NUM_CUTTLEFISH_DEVICES to the number of Cuttlefish
devices

Additionally, configure sudo to allow executing the script
cuttlefish/scripts/iptables.sh without requiring a
password. This script is executed for each Cuttlefish virtual

device in the current user, so it normally requires elevated
privileges. After verifying the contents of the script, you can
do this by running sudo visudo and adding the following
line:

your_username ALL=(ALL) NOPASSWD:
/path/to/cuttlefish/scripts/iptables.sh

A.3.2 Basic Test

To test functionality of the Jupyter notebooks, activate the
Python environment (with poetry shell in the artifact di-
rectory in the provided VM), and launch a Jupyter server by
running jupyter lab in the artifact directory. Then, con-
figure SSH port forwarding to your local machine over the
default Jupyter port 8888, and navigate to the URL from the
output of the Jupyter command in your browser of choice.

To test functionality of the Cuttlefish devices after installing
all dependencies, perform the following:

1. Navigate to your cf-images directory where you
downloaded the Android Cuttlefish images (e.g.,
$HOME/cf-images/11718355), and run the following:
HOME=$PWD ./bin/launch_cvd -num_instances=2
-resume=false -start_webrtc=true
-start_vnc_server=false

2. Wait until you see a message in the out-
put (colored green) asking you to navigate to
https://localhost:8443

3. Connect to the desktop environment, launch a browser,
and navigate to https://localhost:8443.

Next, bootstrap the mitmproxy CA certificate creation that
will be injected into the Android devices by doing the follow-
ing:

1. In /cuttlefish/compose.yaml, change the file path
of the hardumps volume to the absolute path of the in-
flated data/cuttlefish/hardumps folder.

2. Navigate to the /cuttlefish directory and run docker
compose up -build -d.

3. After the containers have been created, run the
generate_mitmproxy_cert.sh script from the same
directory.

4. The CA certificate should then be in the
/cuttlefish/adb_files directory (i.e., c8750f0d.0)

5. Make sure to change the environment variable
MITMPROXY_CACERT_FILENAME in /cuttlefish/.env
to the name of the certificate.

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-vnc-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-vnc-on-ubuntu-20-04

Then, test that the Cuttlefish virtual device is appropri-
ately configured by the infrastructure by running python
analyze.py -test. You should see that the Cuttlefish de-
vices are set up before the script exits.

Finally, modify the input APKs to run with the Cuttlefish
infrastructure by:

1. Modifying the file samples_cuttlefish.csv in
/data/cuttlefish/samples, adding the SHA256
hash, package name, version string, and group name
(the provided samples file uses successful and
unsuccessful to refer to the originally-successful and
originally-unsuccessful APKs).

2. Place the added APKs into the directory
DIR_BASE/samples/<group> with the name
<package>_<version>_<hash>.apk.

3. To run the actual analysis, run analyze.py without the
test flag.

A.4 Evaluation workflow

A.4.1 Major Claims

The major claims made in the paper are as follows:
(C1): Expired domain names are found in the DNS traffic of

multiple versions of Android apps, regardless if they are
out of date or the latest available versions.

(C2): The purpose and use of many such domains can be
identified from the context of the request and inspecting
the decompiled APKs, and they can be abused by mali-
cious re-registrants to change app behavior, even if the
app itself does not change.

(C3): All eight figures and four tables presented in the
text can be produced from our extracted data. How-
ever, please note that because the commercial telemetry
data we used cannot be released, this artifact produces
slightly different versions of Figures 3 and 4, and Table
4. Additionally, Figure 7 is also slightly different, but
because of minor differences in how the original code
processed the raw data.

(C4): The app analysis infrastructure extracts DNS network
traffic of APKs.

A.4.2 Experiments

The following experiments can be performed to verify that
the artifacts are functional and can be used to reproduce the
results from the text. The Jupyter notebooks used for analysis
are bundled with pre-processed data so that the raw data —
which is large — does not have to be re-processed.
(E1): [5 human-minutes + 5 compute-minutes + 0GB disk]:

Run all cells in the footprints.ipynb notebook and verify
that domains were checked for expirations.

How to: Ensure the basic test for the Jupyter notebooks
has been completed, with a Jupyter server now running
in a Python environment with the dependencies installed.
Preparation: Connect to the Jupyter
server with your browser and open the
analysis/footprints.ipynb notebook.
Execution: Press Run → Run All Cells.
Results: The df_footprints variable
is a DataFrame that has a column named
expired_at_exec, denoting domains that were
expired during app execution. The rows that have this
column as True span multiple versions of different apps.

(E2): [30 human-minutes + 5 compute-minutes + 0GB disk]:
Run all cells in the decompilations.ipynb notebook and
verify that most of the domains can be found directly
inside the APK, and their purpose can be identified from
inspecting the decompiled APKs.
How to: Ensure the basic test for the Jupyter notebooks
has been completed, with a Jupyter server now running
in a Python environment with the dependencies installed.
Preparation: Connect to the Jupyter
server with your browser and open the
analysis/decompilations.ipynb notebook.
Execution: Press Run → Run All Cells.
Results: Verify that the Searching for
Domains in Decompiled Code launches
grep commands to search the decompiled APKs
for their corresponding domains. Manually con-
firm that files in the directory DIR_BASE →
samples-jadx-processing/expired_at_reg
contain the output of the grep commands. Randomly
sample some of the identified domains to look at the
decompiled APKs.

(E3): [10 human-minutes + 10 compute-minutes + 0GB
disk]: Run all cells in each Jupyter notebook and verify
that all figures and tables are produced.
How to: Ensure the basic test for the Jupyter notebooks
has been completed, with a Jupyter server now running
in a Python environment with the dependencies installed.
Preparation: Connect to the Jupyter
server with your browser and open the
footprints.ipynb, decompilations.ipynb,
and cuttlefish.ipynb notebooks in the
analysis/ directory.
Execution: Press Run → Run All Cells in each note-
book.
Results: Verify that footprints.ipynb produces
Tables 1, 2, and 4 and Figures 2, 3, 4, 7, and 8,
decompilations.ipynb produces Tables 3 and 4,
and Figure 5, and cuttlefish.ipynb produces Fig-
ure 6.

(E4): [10 human-minutes + 3*2*N/D compute-minutes +
0GB disk]: Launch the Cuttlefish infrastructure on a
sample of APKs.

How to: Ensure the basic test for the Cuttlefish infras-
tructure setup has been completed and the configuration
has been updated.
Preparation: Modify the cuttlefish/.env file
and change NUM_APPS_PER_SAMPLE, the number of
apps that will be analyzed from each of the two sample
groups (N), and NUM_CUTTLEFISH_DEVICES, the
number of live Cuttlefish virtual devices (D).
Execution: Using the configured Python environment,
run python analyze.py in the /cuttlefish di-
rectory.
Results: When analysis of an app com-
pletes, there is a pcap file in DIR_BASE →
DIR_DATADUMPS → tcpdumps → <group> →
<package>_<version>_<hash>_<timestamp>.pcap.

A.5 Notes on Reusability
The number of Cuttlefish devices that can be launched
concurrently can be adjusted by modifying the value of
the num_instances flag provided to the launch_cvd com-
mand, changing the NUM_CUTTLEFISH_DEVICES variable in
cuttlefish/.env, and adding additional Docker contain-
ers to cuttlefish/compose.yaml if necessary. Further-
more, the Cuttlefish infrastructure can be reused for differ-
ent APK inputs, and can be done by modifying the input
samples_cuttlefish.csv file that describe the APKs and
placing them into the expected locations. The analysis note-
books will continue to function even with the addition of new
data, although it may also be desirable to insert your own API
keys for Farsight and Dynadot to analyze new domains.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

